Numerically “exact” methods addressing the dynamics of coupled electron–phonon systems have been intensively developed. Nevertheless, the corresponding results for the electron mobility μdc are scarce, even for the one-dimensional (1d) Holstein model. Building on our recent progress on single-particle properties, here we develop the momentum-space hierarchical equations of motion (HEOM) method to evaluate real-time two-particle correlation functions of the 1d Holstein model at a finite temperature. We compute numerically “exact” dynamics of the current–current correlation function up to real times sufficiently long to capture the electron’s diffusive motion and provide reliable results for μdc in a wide range of model parameters. In contrast to the smooth ballistic-to-diffusive crossover in the weak-coupling regime, we observe a temporally limited slow-down of the electron on intermediate time scales already in the intermediate-coupling regime, which translates to a finite-frequency peak in the optical response. Our momentum-space formulation lowers the numerical effort with respect to existing HEOM-method implementations, while we remove the numerical instabilities inherent to the undamped-mode HEOM by devising an appropriate hierarchy closing scheme. Still, our HEOM remains unstable at too low temperatures, for too strong electron–phonon coupling, and for too fast phonons.

1.
C.
Franchini
,
M.
Reticcioli
,
M.
Setvin
, and
U.
Diebold
, “
Polarons in materials
,”
Nat. Rev. Mater.
6
,
560
586
(
2021
).
2.
L. R. V.
Buizza
and
L. M.
Herz
, “
Polarons and charge localization in metal-halide semiconductors for photovoltaic and light-emitting devices
,”
Adv. Mater.
33
,
2007057
(
2021
).
3.
C.
Jacoboni
,
Theory of Electron Transport in Semiconductors: A Pathway from Elementary Physics to Nonequilibrium Green Functions
(
Springer-Verlag Berlin Heidelberg
,
2010
).
4.
F.
Rossi
,
Theory of Semiconductor Quantum Devices: Microscopic Modeling and Simulation Strategies
(
Springer-Verlag Berlin Heidelberg
,
2011
).
5.
G.
Mahan
,
Many-Particle Physics
(
Kluwer Academic
,
New York
,
2000
).
6.
A. S.
Alexandrov
and
J. T.
Devreese
,
Advances in Polaron Physics
(
Springer-Verlag Berlin Heidelberg
,
2010
).
7.
V.
Coropceanu
,
J.
Cornil
,
D. A.
da Silva Filho
,
Y.
Olivier
,
R.
Silbey
, and
J.-L.
Brédas
, “
Charge transport in organic semiconductors
,”
Chem. Rev.
107
,
926
952
(
2007
).
8.
M.
Mladenović
and
N.
Vukmirović
, “
Charge carrier localization and transport in organic semiconductors: Insights from atomistic multiscale simulations
,”
Adv. Funct. Mater.
25
,
1915
1932
(
2015
).
9.
A.
Köhler
and
H.
Bäsller
,
Electronic Processes in Organic Semiconductors
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
2015
).
10.
M.
Schröter
,
S.
Ivanov
,
J.
Schulze
,
S.
Polyutov
,
Y.
Yan
,
T.
Pullerits
, and
O.
Kühn
, “
Exciton–vibrational coupling in the dynamics and spectroscopy of Frenkel excitons in molecular aggregates
,”
Phys. Rep.
567
,
1
78
(
2015
).
11.
S. J.
Jang
and
B.
Mennucci
, “
Delocalized excitons in natural light-harvesting complexes
,”
Rev. Mod. Phys.
90
,
035003
(
2018
).
12.
V.
van Amerongen
,
L.
Valkunas
, and
R.
van Grondelle
,
Photosynthetic Excitons
(
World Scientific Publishing Co. Pte., Ltd.
,
2000
).
13.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
,
3rd ed.
(
WILEY-VCH Verlag GmbH & Co. KGaA
,
Weinheim
,
2011
).
14.
L.
Valkunas
,
D.
Abramavicius
, and
T.
Mančal
,
Molecular Excitation Dynamics and Relaxation
(
WILEY-VCH Verlag GmbH & Co. KGaA
,
2013
).
15.
T.
Holstein
, “
Studies of polaron motion: Part I. The molecular-crystal model
,”
Ann. Phys.
8
,
325
342
(
1959
).
16.
S.
Poncé
,
W.
Li
,
S.
Reichardt
, and
F.
Giustino
, “
First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials
,”
Rep. Prog. Phys.
83
,
036501
(
2020
).
17.
A. G.
Redfield
, “
The theory of relaxation processes
,” in
Advances in Magnetic Resonance
,
Advances in Magnetic and Optical Resonance Vol. 1
, edited by
J. S.
Waugh
(
Academic Press
,
1965
), pp.
1
32
.
18.
I.
Lang
and
Y. A.
Firsov
, “
Kinetic theory of semiconductors with low mobility
,”
Sov. Phys. JETP
16
,
1301
1312
(
1963
).
19.
R. A.
Marcus
, “
Electron transfer reactions in chemistry. Theory and experiment
,”
Rev. Mod. Phys.
65
,
599
610
(
1993
).
20.
T.
Förster
, “
Delocalized excitation and excitation transfer. Bulletin no. 18
,” Technical Report FSU-2690-18,
Florida State University; Department of Chemistry
,
Tallahassee
,
1964
).
21.
A.
Zhugayevych
and
S.
Tretiak
, “
Theoretical description of structural and electronic properties of organic photovoltaic materials
,”
Annu. Rev. Phys. Chem.
66
,
305
330
(
2015
).
22.
A.
Ishizaki
and
G. R.
Fleming
, “
Quantum coherence in photosynthetic light harvesting
,”
Annu. Rev. Condens. Matter Phys.
3
,
333
361
(
2012
).
23.
A.
Chenu
and
G. D.
Scholes
, “
Coherence in energy transfer and photosynthesis
,”
Annu. Rev. Phys. Chem.
66
,
69
96
(
2015
).
24.
P. J.
Robinson
,
I. S.
Dunn
, and
D. R.
Reichman
, “
Cumulant methods for electron-phonon problems. I. Perturbative expansions
,”
Phys. Rev. B
105
,
224304
(
2022
).
25.
P. J.
Robinson
,
I. S.
Dunn
, and
D. R.
Reichman
, “
Cumulant methods for electron-phonon problems. II. The self-consistent cumulant expansion
,”
Phys. Rev. B
105
,
224305
(
2022
).
26.
P.
Mitrić
,
V.
Janković
,
N.
Vukmirović
, and
D.
Tanasković
, “
Cumulant expansion in the Holstein model: Spectral functions and mobility
,”
Phys. Rev. B
107
,
125165
(
2023
).
27.
J.
Ma
and
J.
Cao
, “
Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. I. Full cumulant expansions and system-bath entanglement
,”
J. Chem. Phys.
142
,
094106
(
2015
).
28.
J. A.
Nöthling
,
T.
Mančal
, and
T. P. J.
Krüger
, “
Accuracy of approximate methods for the calculation of absorption-type linear spectra with a complex system–bath coupling
,”
J. Chem. Phys.
157
,
095103
(
2022
).
29.
S.
Ciuchi
,
F.
de Pasquale
,
S.
Fratini
, and
D.
Feinberg
, “
Dynamical mean-field theory of the small polaron
,”
Phys. Rev. B
56
,
4494
4512
(
1997
).
30.
S.
Fratini
,
F.
de Pasquale
, and
S.
Ciuchi
, “
Optical absorption from a nondegenerate polaron gas
,”
Phys. Rev. B
63
,
153101
(
2001
).
31.
S.
Fratini
and
S.
Ciuchi
, “
Dynamical mean-field theory of transport of small polarons
,”
Phys. Rev. Lett.
91
,
256403
(
2003
).
32.
S.
Fratini
and
S.
Ciuchi
, “
Optical properties of small polarons from dynamical mean-field theory
,”
Phys. Rev. B
74
,
075101
(
2006
).
33.
P.
Mitrić
,
V.
Janković
,
N.
Vukmirović
, and
D.
Tanasković
, “
Spectral functions of the Holstein polaron: Exact and approximate solutions
,”
Phys. Rev. Lett.
129
,
096401
(
2022
).
34.
M.
Grover
and
R.
Silbey
, “
Exciton migration in molecular crystals
,”
J. Chem. Phys.
54
,
4843
4851
(
1971
).
35.
D. R.
Yarkony
and
R.
Silbey
, “
Variational approach to exciton transport in molecular crystals
,”
J. Chem. Phys.
67
,
5818
5827
(
1977
).
36.
R.
Silbey
and
R. W.
Munn
, “
General theory of electronic transport in molecular crystals. I. Local linear electron–phonon coupling
,”
J. Chem. Phys.
72
,
2763
2773
(
1980
).
37.
K.
Hannewald
and
P. A.
Bobbert
, “
Anisotropy effects in phonon-assisted charge-carrier transport in organic molecular crystals
,”
Phys. Rev. B
69
,
075212
(
2004
).
38.
Y.-C.
Cheng
and
R. J.
Silbey
, “
A unified theory for charge-carrier transport in organic crystals
,”
J. Chem. Phys.
128
,
114713
(
2008
).
39.
F.
Ortmann
,
F.
Bechstedt
, and
K.
Hannewald
, “
Theory of charge transport in organic crystals: Beyond Holstein’s small-polaron model
,”
Phys. Rev. B
79
,
235206
(
2009
).
40.
D.
Chen
,
J.
Ye
,
H.
Zhang
, and
Y.
Zhao
, “
On the Munn–Silbey approach to polaron transport with off-diagonal coupling and temperature-dependent canonical transformations
,”
J. Phys. Chem. B
115
,
5312
5321
(
2011
).
41.
M.
Kornjača
and
N.
Vukmirović
, “
Polaron mobility obtained by a variational approach for lattice Fröhlich models
,”
Ann. Phys.
391
,
183
202
(
2018
).
42.
N.
Prodanović
and
N.
Vukmirović
, “
Charge carrier mobility in systems with local electron-phonon interaction
,”
Phys. Rev. B
99
,
104304
(
2019
).
43.
J. H.
Fetherolf
,
D.
Golež
, and
T. C.
Berkelbach
, “
A unification of the Holstein polaron and dynamic disorder pictures of charge transport in organic crystals
,”
Phys. Rev. X
10
,
021062
(
2020
).
44.
M.
Berciu
, “
Green’s function of a dressed particle
,”
Phys. Rev. Lett.
97
,
036402
(
2006
).
45.
G. L.
Goodvin
,
M.
Berciu
, and
G. A.
Sawatzky
, “
Green’s function of the Holstein polaron
,”
Phys. Rev. B
74
,
245104
(
2006
).
46.
G. L.
Goodvin
,
A. S.
Mishchenko
, and
M.
Berciu
, “
Optical conductivity of the Holstein polaron
,”
Phys. Rev. Lett.
107
,
076403
(
2011
).
47.
D.
Balzer
,
T. J.
Smolders
,
D.
Blyth
,
S. N.
Hood
, and
I.
Kassal
, “
Delocalised kinetic Monte Carlo for simulating delocalisation-enhanced charge and exciton transport in disordered materials
,”
Chem. Sci.
12
,
2276
(
2021
).
48.
J. T.
Willson
,
W.
Liu
,
D.
Balzer
, and
I.
Kassal
, “
Jumping kinetic Monte Carlo: Fast and accurate simulations of partially delocalized charge transport in organic semiconductors
,”
J. Phys. Chem. Lett.
14
,
3757
3764
(
2023
).
49.
K.
Hannewald
and
P. A.
Bobbert
, “
Ab initio theory of charge-carrier conduction in ultrapure organic crystals
,”
Appl. Phys. Lett.
85
,
1535
1537
(
2004
).
50.
F.
Ortmann
,
F.
Bechstedt
, and
K.
Hannewald
, “
Charge transport in organic crystals: Interplay of band transport, hopping and electron–phonon scattering
,”
New J. Phys.
12
,
023011
(
2010
).
51.
J.-J.
Zhou
and
M.
Bernardi
, “
Predicting charge transport in the presence of polarons: The beyond-quasiparticle regime in SrTiO3
,”
Phys. Rev. Res.
1
,
033138
(
2019
).
52.
L.
Cupellini
,
F.
Lipparini
, and
J.
Cao
, “
Absorption and circular dichroism spectra of molecular aggregates with the full cumulant expansion
,”
J. Phys. Chem. B
124
,
8610
8617
(
2020
).
53.
N.
Vukmirović
, “
Calculations of electron mobility in II-VI semiconductors
,”
Phys. Rev. B
104
,
085203
(
2021
).
54.
B. K.
Chang
,
J.-J.
Zhou
,
N.-E.
Lee
, and
M.
Bernardi
, “
Intermediate polaronic charge transport in organic crystals from a many-body first-principles approach
,”
npj Comput. Mater.
8
,
63
(
2022
).
55.
S.
Hutsch
,
M.
Panhans
, and
F.
Ortmann
, “
Charge carrier mobilities of organic semiconductors: Ab initio simulations with mode-specific treatment of molecular vibrations
,”
npj Comput. Mater.
8
,
228
(
2022
).
56.
H.
De Raedt
and
A.
Lagendijk
, “
Numerical calculation of path integrals: The small-polaron model
,”
Phys. Rev. B
27
,
6097
6109
(
1983
).
57.
H.
De Raedt
and
A.
Lagendijk
, “
Numerical study of Holstein’s molecular-crystal model: Adiabatic limit and influence of phonon dispersion
,”
Phys. Rev. B
30
,
1671
1678
(
1984
).
58.
N. V.
Prokof’ev
and
B. V.
Svistunov
, “
Polaron problem by diagrammatic quantum Monte Carlo
,”
Phys. Rev. Lett.
81
,
2514
2517
(
1998
).
59.
A. S.
Mishchenko
,
N. V.
Prokof’ev
,
A.
Sakamoto
, and
B. V.
Svistunov
, “
Diagrammatic quantum Monte Carlo study of the Fröhlich polaron
,”
Phys. Rev. B
62
,
6317
6336
(
2000
).
60.
A. S.
Mishchenko
, “
Diagrammatic Monte Carlo method as applied to the polaron problems
,”
Phys.-Usp.
48
,
887
(
2005
).
61.
A. S.
Mishchenko
,
N.
Nagaosa
,
G.
De Filippis
,
A.
de Candia
, and
V.
Cataudella
, “
Mobility of Holstein polaron at finite temperature: An unbiased approach
,”
Phys. Rev. Lett.
114
,
146401
(
2015
).
62.
Y.-C.
Wang
and
Y.
Zhao
, “
Diagrammatic quantum Monte Carlo toward the calculation of transport properties in disordered semiconductors
,”
J. Chem. Phys.
156
,
204116
(
2022
).
63.
S.
Miladić
and
N.
Vukmirović
, “
Method for obtaining polaron mobility using real and imaginary time path-integral quantum Monte Carlo
,”
Phys. Rev. B
107
,
184315
(
2023
).
64.
P.
Prelovšek
and
J.
Bonča
, “
Ground state and finite temperature Lanczos methods
,” in
Strongly Correlated Systems: Numerical Methods
, edited by
A.
Avella
and
F.
Mancini
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2013
), pp.
1
30
.
65.
J.
Bonča
,
S. A.
Trugman
, and
I.
Batistić
, “
Holstein polaron
,”
Phys. Rev. B
60
,
1633
1642
(
1999
).
66.
O. S.
Barišić
, “
Calculation of excited polaron states in the Holstein model
,”
Phys. Rev. B
69
,
064302
(
2004
).
67.
J.
Bonča
,
S. A.
Trugman
, and
M.
Berciu
, “
Spectral function of the Holstein polaron at finite temperature
,”
Phys. Rev. B
100
,
094307
(
2019
).
68.
J.
Bonča
and
S. A.
Trugman
, “
Dynamic properties of a polaron coupled to dispersive optical phonons
,”
Phys. Rev. B
103
,
054304
(
2021
).
69.
J.
Bonča
and
S. A.
Trugman
, “
Electron removal spectral function of a polaron coupled to dispersive optical phonons
,”
Phys. Rev. B
106
,
174303
(
2022
).
70.
E.
Jeckelmann
and
S. R.
White
, “
Density-matrix renormalization-group study of the polaron problem in the Holstein model
,”
Phys. Rev. B
57
,
6376
6385
(
1998
).
71.
C.
Zhang
,
E.
Jeckelmann
, and
S. R.
White
, “
Dynamical properties of the one-dimensional Holstein model
,”
Phys. Rev. B
60
,
14092
14104
(
1999
).
72.
J.
Ren
,
W.
Li
,
T.
Jiang
,
Y.
Wang
, and
Z.
Shuai
, “
Time-dependent density matrix renormalization group method for quantum dynamics in complex systems
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
12
,
e1614
(
2022
).
73.
J.
Ren
,
Z.
Shuai
, and
G.
Kin-Lic Chan
, “
Time-dependent density matrix renormalization group algorithms for nearly exact absorption and fluorescence spectra of molecular aggregates at both zero and finite temperature
,”
J. Chem. Theory Comput.
14
,
5027
5039
(
2018
).
74.
W.
Li
,
J.
Ren
, and
Z.
Shuai
, “
Finite-temperature TD-DMRG for the carrier mobility of organic semiconductors
,”
J. Phys. Chem. Lett.
11
,
4930
4936
(
2020
).
75.
Y.
Ge
,
W.
Li
,
J.
Ren
, and
Z.
Shuai
, “
Computational method for evaluating the thermoelectric power factor for organic materials modeled by the Holstein model: A time-dependent density matrix renormalization group formalism
,”
J. Chem. Theory Comput.
18
,
6437
6446
(
2022
).
76.
D.
Jansen
,
J.
Bonča
, and
F.
Heidrich-Meisner
, “
Finite-temperature density-matrix renormalization group method for electron-phonon systems: Thermodynamics and Holstein-polaron spectral functions
,”
Phys. Rev. B
102
,
165155
(
2020
).
77.
D.
Jansen
,
J.
Bonča
, and
F.
Heidrich-Meisner
, “
Finite-temperature optical conductivity with density-matrix renormalization group methods for the Holstein polaron and bipolaron with dispersive phonons
,”
Phys. Rev. B
106
,
155129
(
2022
).
78.
R.
Borrelli
and
M. F.
Gelin
, “
Quantum electron-vibrational dynamics at finite temperature: Thermo field dynamics approach
,”
J. Chem. Phys.
145
,
224101
(
2016
).
79.
R.
Borrelli
and
M. F.
Gelin
, “
Simulation of quantum dynamics of excitonic systems at finite temperature: An efficient method based on thermo field dynamics
,”
Sci. Rep.
7
,
9127
(
2017
).
80.
R.
Borrelli
and
M. F.
Gelin
, “
Finite temperature quantum dynamics of complex systems: Integrating thermo-field theories and tensor-train methods
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1539
(
2021
).
81.
Y.
Zhao
, “
The hierarchy of Davydov’s Ansätze: From guesswork to numerically ‘exact’ many-body wave functions
,”
J. Chem. Phys.
158
,
080901
(
2023
).
82.
Y.
Zhao
,
K.
Sun
,
L.
Chen
, and
M.
Gelin
, “
The hierarchy of Davydov’s Ansätze and its applications
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
12
,
e1589
(
2022
).
83.
L.
Chen
and
Y.
Zhao
, “
Finite temperature dynamics of a Holstein polaron: The thermo-field dynamics approach
,”
J. Chem. Phys.
147
,
214102
(
2017
).
84.
Z.
Huang
,
L.
Chen
,
N.
Zhou
, and
Y.
Zhao
, “
Transient dynamics of a one-dimensional Holstein polaron under the influence of an external electric field
,”
Ann. Phys.
529
,
1600367
(
2017
).
85.
A. D.
Somoza
,
K.-W.
Sun
,
R. A.
Molina
, and
Y.
Zhao
, “
Dynamics of coherence, localization and excitation transfer in disordered nanorings
,”
Phys. Chem. Chem. Phys.
19
,
25996
26013
(
2017
).
86.
Y.
Tanimura
, “
Stochastic Liouville, Langevin, Fokker–Planck, and master equation approaches to quantum dissipative systems
,”
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
87.
R.-X.
Xu
and
Y. J.
Yan
, “
Dynamics of quantum dissipation systems interacting with bosonic canonical bath: Hierarchical equations of motion approach
,”
Phys. Rev. E
75
,
031107
(
2007
).
88.
A.
Ishizaki
and
G. R.
Fleming
, “
Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: Reduced hierarchy equation approach
,”
J. Chem. Phys.
130
,
234111
(
2009
).
89.
Y.
Tanimura
, “
Numerically ‘exact’ approach to open quantum dynamics: The hierarchical equations of motion (HEOM)
,”
J. Chem. Phys.
153
,
020901
(
2020
).
90.
C.-Y.
Hsieh
and
J.
Cao
, “
A unified stochastic formulation of dissipative quantum dynamics. I. Generalized hierarchical equations
,”
J. Chem. Phys.
148
,
014103
(
2018
).
91.
H.-D.
Zhang
,
R.-X.
Xu
,
X.
Zheng
, and
Y.
Yan
, “
Statistical quasi-particle theory for open quantum systems
,”
Mol. Phys.
116
,
780
812
(
2018
).
92.
Y.
Ke
and
Y.
Zhao
, “
Hierarchy of stochastic Schrödinger equation towards the calculation of absorption and circular dichroism spectra
,”
J. Chem. Phys.
146
,
174105
(
2017
).
93.
Y.
Ke
and
Y.
Zhao
, “
An extension of stochastic hierarchy equations of motion for the equilibrium correlation functions
,”
J. Chem. Phys.
146
,
214105
(
2017
).
94.
L.
Diósi
and
W. T.
Strunz
, “
The non-Markovian stochastic Schrödinger equation for open systems
,”
Phys. Lett. A
235
,
569
573
(
1997
).
95.
J.
Roden
,
W. T.
Strunz
, and
A.
Eisfeld
, “
Non-Markovian quantum state diffusion for absorption spectra of molecular aggregates
,”
J. Chem. Phys.
134
,
034902
(
2011
).
96.
V.
Janković
and
N.
Vukmirović
, “
Spectral and thermodynamic properties of the Holstein polaron: Hierarchical equations of motion approach
,”
Phys. Rev. B
105
,
054311
(
2022
).
97.
D.
Wang
,
L.
Chen
,
R.
Zheng
,
L.
Wang
, and
Q.
Shi
, “
Communications: A nonperturbative quantum master equation approach to charge carrier transport in organic molecular crystals
,”
J. Chem. Phys.
132
,
081101
(
2010
).
98.
L.
Song
and
Q.
Shi
, “
Calculation of correlated initial state in the hierarchical equations of motion method using an imaginary time path integral approach
,”
J. Chem. Phys.
143
,
194106
(
2015
).
99.
T.
Xing
,
T.
Li
,
Y.
Yan
,
S.
Bai
, and
Q.
Shi
, “
Application of the imaginary time hierarchical equations of motion method to calculate real time correlation functions
,”
J. Chem. Phys.
156
,
244102
(
2022
).
100.
L.
Song
and
Q.
Shi
, “
A new approach to calculate charge carrier transport mobility in organic molecular crystals from imaginary time path integral simulations
,”
J. Chem. Phys.
142
,
174103
(
2015
).
101.
I. S.
Dunn
,
R.
Tempelaar
, and
D. R.
Reichman
, “
Removing instabilities in the hierarchical equations of motion: Exact and approximate projection approaches
,”
J. Chem. Phys.
150
,
184109
(
2019
).
102.
L.
Chen
,
Y.
Zhao
, and
Y.
Tanimura
, “
Dynamics of a one-dimensional Holstein polaron with the hierarchical equations of motion approach
,”
J. Phys. Chem. Lett.
6
,
3110
3115
(
2015
).
103.
Y.
Yan
,
T.
Xing
, and
Q.
Shi
, “
A new method to improve the numerical stability of the hierarchical equations of motion for discrete harmonic oscillator modes
,”
J. Chem. Phys.
153
,
204109
(
2020
).
104.
C.
Karrasch
,
D. M.
Kennes
, and
J. E.
Moore
, “
Transport properties of the one-dimensional Hubbard model at finite temperature
,”
Phys. Rev. B
90
,
155104
(
2014
).
105.
B.
Bertini
,
F.
Heidrich-Meisner
,
C.
Karrasch
,
T.
Prosen
,
R.
Steinigeweg
, and
M.
Žnidarič
, “
Finite-temperature transport in one-dimensional quantum lattice models
,”
Rev. Mod. Phys.
93
,
025003
(
2021
).
106.
G.
De Filippis
,
V.
Cataudella
,
A. S.
Mishchenko
,
N.
Nagaosa
,
A.
Fierro
, and
A.
de Candia
, “
Crossover from super- to subdiffusive motion and memory effects in crystalline organic semiconductors
,”
Phys. Rev. Lett.
114
,
086601
(
2015
).
107.
N.
Lu
and
S.
Mukamel
, “
Polaron and size effects in optical line shapes of molecular aggregates
,”
J. Chem. Phys.
95
,
1588
1607
(
1991
).
108.
Y.
Tanimura
, “
Reduced hierarchical equations of motion in real and imaginary time: Correlated initial states and thermodynamic quantities
,”
J. Chem. Phys.
141
,
044114
(
2014
).
109.
D.
Hou
,
S.
Wang
,
R.
Wang
,
L. Z.
Ye
,
R. X.
Xu
,
X.
Zheng
, and
Y. J.
Yan
, “
Improving the efficiency of hierarchical equations of motion approach and application to coherent dynamics in Aharonov–Bohm interferometers
,”
J. Chem. Phys.
142
,
104112
(
2015
).
110.
T. P.
Fay
, “
A simple improved low temperature correction for the hierarchical equations of motion
,”
J. Chem. Phys.
157
,
054108
(
2022
).
111.
V. M.
Axt
and
S.
Mukamel
, “
Nonlinear optics of semiconductor and molecular nanostructures; a common perspective
,”
Rev. Mod. Phys.
70
,
145
174
(
1998
).
112.
F.
Rossi
and
T.
Kuhn
, “
Theory of ultrafast phenomena in photoexcited semiconductors
,”
Rev. Mod. Phys.
74
,
895
950
(
2002
).
113.
V.
Janković
and
N.
Vukmirović
, “
Dynamics of exciton formation and relaxation in photoexcited semiconductors
,”
Phys. Rev. B
92
,
235208
(
2015
).
114.
D.
Thirumalai
and
B.
Berne
, “
Methods for simulating time correlation functions in quantum systems
,”
Comput. Phys. Commun.
63
,
415
426
(
1991
).
115.
G.
Schubert
,
G.
Wellein
,
A.
Weisse
,
A.
Alvermann
, and
H.
Fehske
, “
Optical absorption and activated transport in polaronic systems
,”
Phys. Rev. B
72
,
104304
(
2005
).
116.
M.
Frigo
and
S. G.
Johnson
, “
The design and implementation of FFTW3
,”
Proc. IEEE
93
,
216
231
(
2005
).
117.
V.
Janković
(
2023
), “
Numerical study of the one-dimensional Holstein model using the momentum-space hierarchical equations of motion method
,” Zenodo.
118.
D. M.
Wilkins
and
N. S.
Dattani
, “
Why quantum coherence is not important in the Fenna-Matthews-Olsen complex
,”
J. Chem. Theory Comput.
11
,
3411
3419
(
2015
).
119.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in C
,
2nd ed.
(
Cambridge University Press
,
Cambridge
,
1992
).
120.
C. M.
Bender
and
S. A.
Orszag
,
Advanced Mathematical Methods for Scientists and Engineers
(
McGraw-Hill Book Company
,
1978
).
121.
Q.
Shi
,
Y.
Xu
,
Y.
Yan
, and
M.
Xu
, “
Efficient propagation of the hierarchical equations of motion using the matrix product state method
,”
J. Chem. Phys.
148
,
174102
(
2018
).
122.
Y.
Yan
,
M.
Xu
,
T.
Li
, and
Q.
Shi
, “
Efficient propagation of the hierarchical equations of motion using the Tucker and hierarchical Tucker tensors
,”
J. Chem. Phys.
154
,
194104
(
2021
).
123.
E.
Mangaud
,
A.
Jaouadi
,
A.
Chin
, and
M.
Desouter-Lecomte
, “
Survey of the hierarchical equations of motion in tensor-train format for non-Markovian quantum dynamics
,”
Eur. Phys. J.: Spec. Top.
(published online
2023
). https://doi.org/10.1140/epjs/s11734-023-00919-0
124.
Q.
Shi
,
L.
Chen
,
G.
Nan
,
R.-X.
Xu
, and
Y.
Yan
, “
Efficient hierarchical Liouville space propagator to quantum dissipative dynamics
,”
J. Chem. Phys.
130
,
084105
(
2009
).
125.
S.
Fratini
,
D.
Mayou
, and
S.
Ciuchi
, “
The transient localization scenario for charge transport in crystalline organic materials
,”
Adv. Funct. Mater.
26
,
2292
2315
(
2016
).
126.
S.
Fratini
and
S.
Ciuchi
, “
Dynamical localization corrections to band transport
,”
Phys. Rev. Res.
2
,
013001
(
2020
).
127.
S.
Fratini
and
S.
Ciuchi
, “
Displaced Drude peak and bad metal from the interaction with slow fluctuations
,”
SciPost Phys.
11
,
039
(
2021
).
128.
Y.
Zhao
,
D. W.
Brown
, and
K.
Lindenberg
, “
On the Munn–Silbey approach to nonlocal exciton–phonon coupling
,”
J. Chem. Phys.
100
,
2335
2345
(
1994
).
129.
R.
Feynman
and
F.
Vernon
, “
The theory of a general quantum system interacting with a linear dissipative system
,”
Ann. Phys.
24
,
118
173
(
1963
).
130.
L.
Zhu
,
H.
Liu
,
W.
Xie
, and
Q.
Shi
, “
Explicit system-bath correlation calculated using the hierarchical equations of motion method
,”
J. Chem. Phys.
137
,
194106
(
2012
).
131.
A.
Kato
and
Y.
Tanimura
, “
Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines
,”
J. Chem. Phys.
145
,
224105
(
2016
).

Supplementary Material

You do not currently have access to this content.