Computing accurate yet efficient approximations to the solutions of the electronic Schrödinger equation has been a paramount challenge of computational chemistry for decades. Quantum Monte Carlo methods are a promising avenue of development as their core algorithm exhibits a number of favorable properties: it is highly parallel and scales favorably with the considered system size, with an accuracy that is limited only by the choice of the wave function Ansatz. The recently introduced machine-learned parametrizations of quantum Monte Carlo Ansätze rely on the efficiency of neural networks as universal function approximators to achieve state of the art accuracy on a variety of molecular systems. With interest in the field growing rapidly, there is a clear need for easy to use, modular, and extendable software libraries facilitating the development and adoption of this new class of methods. In this contribution, the DeepQMC program package is introduced, in an attempt to provide a common framework for future investigations by unifying many of the currently available deep-learning quantum Monte Carlo architectures. Furthermore, the manuscript provides a brief introduction to the methodology of variational quantum Monte Carlo in real space, highlights some technical challenges of optimizing neural network wave functions, and presents example black-box applications of the program package. We thereby intend to make this novel field accessible to a broader class of practitioners from both the quantum chemistry and the machine learning communities.

1.
F.
Noé
,
A.
Tkatchenko
,
K.-R.
Müller
, and
C.
Clementi
,
Annu. Rev. Phys. Chem.
71
,
361
(
2020
).
2.
H.
Kulik
,
T.
Hammerschmidt
,
J.
Schmidt
,
S.
Botti
,
M.
Marques
,
M.
Boley
,
M.
Scheffler
,
M.
Todorović
,
P.
Rinke
,
C.
Oses
et al,
Electron. Struct.
4
,
023004
(
2022
).
3.
J.
Kirkpatrick
,
B.
McMorrow
,
D. H. P.
Turban
,
A. L.
Gaunt
,
J. S.
Spencer
,
A. G. D. G.
Matthews
,
A.
Obika
,
L.
Thiry
,
M.
Fortunato
,
D.
Pfau
,
L. R.
Castellanos
,
S.
Petersen
,
A. W. R.
Nelson
,
P.
Kohli
,
P.
Mori-Sánchez
,
D.
Hassabis
, and
A. J.
Cohen
,
Science
374
,
1385
(
2021
).
4.
J.
Hermann
,
J.
Spencer
,
K.
Choo
,
A.
Mezzacapo
,
W. M. C.
Foulkes
,
D.
Pfau
,
G.
Carleo
, and
F.
Noé
, “
Ab-initio quantum chemistry with neural-network wave functions
,”
Nat. Rev. Chem.
(published online) (
2023
).
5.
G.
Carleo
and
M.
Troyer
,
Science
355
,
602
(
2017
).
6.
J.
Han
,
L.
Zhang
, and
W.
E
,
J. Comput. Phys.
399
,
108929
(
2019
).
7.
J.
Hermann
,
Z.
Schätzle
, and
F.
Noé
,
Nat. Chem.
12
,
891
(
2020
); arXiv:1909.08423 [physics, stat].
8.
D.
Pfau
,
J. S.
Spencer
,
A. G. D. G.
Matthews
, and
W. M. C.
Foulkes
,
Phys. Rev. Res.
2
,
033429
(
2020
).
9.
Z.
Schätzle
,
J.
Hermann
, and
F.
Noé
,
J. Chem. Phys.
154
,
124108
(
2021
).
10.
J.
Lin
,
G.
Goldshlager
, and
L.
Lin
,
J. Comput. Phys.
474
,
111765
(
2023
).
11.
L.
Gerard
,
M.
Scherbela
,
P.
Marquetand
, and
P.
Grohs
, “
Gold-standard solutions to the Schrödinger equation using deep learning: How much physics do we need?
,”
Adv. Neural Inf. Process.
35
,
10282
10294
(
2022
); arXiv:2205.09438 [physics] (
2022
).
12.
I.
von Glehn
,
J. S.
Spencer
, and
D.
Pfau
, “
A self-attention ansatz for ab-initio quantum chemistry
,” arXiv:2211.13672 [physics] (
2022
).
13.
M. T.
Entwistle
,
Z.
Schätzle
,
P. A.
Erdman
,
J.
Hermann
, and
F.
Noé
,
Nat. Commun.
14
,
274
(
2023
).
14.
G.
Pescia
,
J.
Han
,
A.
Lovato
,
J.
Lu
, and
G.
Carleo
,
Phys. Rev. Res.
4
,
023138
(
2022
).
15.
M.
Wilson
,
S.
Moroni
,
M.
Holzmann
,
N.
Gao
,
F.
Wudarski
,
T.
Vegge
, and
A.
Bhowmik
,
Phys. Rev. B
107
,
235139
(
2023
).
16.
X.
Li
,
C.
Fan
,
W.
Ren
, and
J.
Chen
,
Phys. Rev. Res.
4
,
013021
(
2022
); arXiv:2108.11661 [physics.chem-ph].
17.
Y.
Qian
,
W.
Fu
,
W.
Ren
, and
J.
Chen
,
J. Chem. Phys.
157
,
164104
(
2022
).
18.
M.
Wilson
,
N.
Gao
,
F.
Wudarski
,
E.
Rieffel
, and
N. M.
Tubman
, arXiv:2103.12570 (
2021
).
19.
W.
Ren
,
W.
Fu
,
X.
Wu
, and
J.
Chen
,
Nat. Commun.
14
,
1860
(
2023
).
20.
M.
Scherbela
,
R.
Reisenhofer
,
L.
Gerard
,
P.
Marquetand
, and
P.
Grohs
, “
Solving the electronic Schrödinger equation for multiple nuclear geometries with weight-sharing deep neural networks
,”
Nat. Comput. Sci.
2
,
331
341
(
2022
).
21.
N.
Gao
and
S.
Günnemann
, “
Ab-initio potential energy surfaces by pairing GNNs with neural wave functions
,” in International Conference on Learning Representations 2021 (ICLR, 2021); arXiv:2110.05064 [physics] (
2022
).
22.
N.
Gao
and
S.
Günnemann
, “
Sampling-free inference for ab-initio potential energy surface networks
,” in Eleventh International Conference on Learning Representations (ICLR, 2022); arXiv:2205.14962 [physics] (
2023
).
23.
M.
Scherbela
,
L.
Gerard
, and
P.
Grohs
, “
Towards a foundation model for neural network wavefunctions
,” arXiv:2303.09949 [physics] (
2023
).
24.
N.
Gao
and
S.
Günnemann
, “
Generalizing neural wave functions
,” arXiv:2302.04168 [physics, physics:quant-ph] (
2023
).
25.
F.
Vicentini
,
D.
Hofmann
,
A.
Szabó
,
D.
Wu
,
C.
Roth
,
C.
Giuliani
,
G.
Pescia
,
J.
Nys
,
V.
Vargas-Calderón
,
N.
Astrakhantsev
, and
G.
Carleo
,
SciPost Phys. Codebases
7
,
r3.4
(
2022
).
26.
J.
Hermann
,
Z.
Schätzle
,
P. B.
Szabó
,
M.
Mezera
DeepQMC Contributers
,
DeepQMC
,
2023
.
27.
J. S.
Spencer
,
D.
Pfau
FermiNet Contributors
,
FermiNet
,
2020
.
28.
M.
Scherbela
,
L.
Gerard
, and
R.
Reisenhofer
,
DeepErwin
,
2020
.
29.
J.
Bradbury
,
R.
Frostig
,
P.
Hawkins
,
M. J.
Johnson
,
C.
Leary
,
D.
Maclaurin
,
G.
Necula
,
A.
Paszke
,
J.
VanderPlas
,
S.
Wanderman-Milne
, and
Q.
Zhang
,
JAX: Composable transformations of Python + NumPy programs
,
2018
.
30.
G.
Van Rossum
and
F. L.
Drake
,
Python 3 Reference Manual
(
CreateSpace
,
Scotts Valley, CA
,
2009
).
31.
T.
Hennigan
,
T.
Cai
,
T.
Norman
, and
I.
Babuschkin
,
Haiku: Sonnet for JAX
,
2020
.
32.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
,
Rev. Mod. Phys.
73
,
33
(
2001
).
33.
R. P.
Feynman
and
M.
Cohen
,
Phys. Rev.
102
,
1189
(
1956
).
34.
M.
Burkatzki
,
C.
Filippi
, and
M.
Dolg
,
J. Chem. Phys.
126
,
234105
(
2007
).
35.
M. C.
Bennett
,
C. A.
Melton
,
A.
Annaberdiyev
,
G.
Wang
,
L.
Shulenburger
, and
L.
Mitas
,
J. Chem. Phys.
147
,
224106
(
2017
).
36.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
,
J. J.
Eriksen
,
Y.
Gao
,
S.
Guo
,
J.
Hermann
,
M. R.
Hermes
,
K.
Koh
,
P.
Koval
,
S.
Lehtola
,
Z.
Li
,
J.
Liu
,
N.
Mardirossian
,
J. D.
McClain
,
M.
Motta
,
B.
Mussard
,
H. Q.
Pham
,
A.
Pulkin
,
W.
Purwanto
,
P. J.
Robinson
,
E.
Ronca
,
E. R.
Sayfutyarova
,
M.
Scheurer
,
H. F.
Schurkus
,
J. E. T.
Smith
,
C.
Sun
,
S.-N.
Sun
,
S.
Upadhyay
,
L. K.
Wagner
,
X.
Wang
,
A.
White
,
J. D.
Whitfield
,
M. J.
Williamson
,
S.
Wouters
,
J.
Yang
,
J. M.
Yu
,
T.
Zhu
,
T. C.
Berkelbach
,
S.
Sharma
,
A. Y.
Sokolov
, and
G. K.-L.
Chan
,
J. Chem. Phys.
153
,
024109
(
2020
).
37.
T.
Kato
,
Commun. Pure Appl. Math.
10
,
151
(
1957
).
38.
K.
Inui
,
Y.
Kato
, and
Y.
Motome
,
Phys. Rev. Res.
3
,
043126
(
2021
).
39.
S.
Sæther
,
T.
Kjærgaard
,
H.
Koch
, and
I.-M.
Høyvik
,
J. Chem. Theory Comput.
13
,
5282
(
2017
).
40.
X.
He
and
K. M. J.
Merz
,
J. Chem. Theory Comput.
6
,
405
(
2010
).
41.
D. L.
Yeager
and
P.
Jo/rgensen
,
J. Chem. Phys.
71
,
755
(
1979
).
42.
S.-I.
Amari
, in
Advances in Neural Information Processing Systems
, edited by
M. C.
Mozer
,
M.
Jordan
, and
T.
Petsche
(
MIT Press
,
1996
), Vol.
9
.
43.
J.
Martens
and
R.
Grosse
,
Proceedings of the 32nd International Conference on Machine Learning
(
PMLR
,
2015
), pp.
2408
2417
.
44.
J. S.
Spencer
,
D.
Pfau
,
A.
Botev
, and
W. M. C.
Foulkes
, “
Better, faster fermionic neural networks
,” arXiv:2011.07125 [physics] (
2020
).
45.
G.
Pescia
,
J.
Nys
,
J.
Kim
,
A.
Lovato
, and
G.
Carleo
, “
Message-passing neural quantum states for the homogeneous electron gas
,” preprint arXiv:2305.07240 (
2023
).
46.
A.
Botev
and
J.
Martens
,
KFAC-JAX
,
2022
.
47.
I.
Loshchilov
and
F.
Hutter
, “
Decoupled weight decay regularization
,” in International Conference on Learning Representations 2018 (ICLR, 2018); arXiv:1711.05101 [cs, math] (
2019
).
48.
Y.
Nomura
,
A. S.
Darmawan
,
Y.
Yamaji
, and
M.
Imada
,
Phys. Rev. B
96
,
205152
(
2017
).
49.
S.
Sorella
,
Phys. Rev. Lett.
80
,
4558
(
1998
).
50.
S.
Sorella
,
Phys. Rev. B
64
,
024512
(
2001
).
51.
J.
Martens
,
J. Mach. Learn. Res.
21
,
146
(
2020
).
52.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
53.
W. K.
Hastings
,
Biometrika
57
,
97
(
1970
).
54.
J.
Besag
,
J. R. Stat. Soc. Ser. B: Methodol.
56
,
581
(
1994
).
55.
J. M.
Flegal
,
M.
Haran
, and
G. L.
Jones
,
Stat. Sci.
23
,
250
(
2008
).
56.
A.
Sokal
, “
Monte Carlo methods in statistical mechanics: Foundations and new algorithms
,” in Functional Integration: Basics and Applications (
Springer, Boston
,
1997
), 131–192.https://doi.org/10.1007/978-1-4899-0319-8_6.
57.
N.
Nemec
,
M. D.
Towler
, and
R. J.
Needs
,
J. Chem. Phys.
132
,
034111
(
2010
).
58.
N. D.
Drummond
,
M. D.
Towler
, and
R. J.
Needs
,
Phys. Rev. B
70
,
235119
(
2004
).
59.
D.
Feller
,
K. A.
Peterson
, and
D. A.
Dixon
,
J. Chem. Phys.
129
,
204105
(
2008
).
60.
D. P.
O’eill
and
P. M. W.
Gill
,
Mol. Phys.
103
,
763
(
2005
).
61.
A.
Annaberdiyev
,
G.
Wang
,
C. A.
Melton
,
M. C.
Bennett
,
L.
Shulenburger
, and
L.
Mitas
,
J. Chem. Phys.
149
,
134108
(
2018
); arXiv:1805.06436 [cond-mat.mtrl-sci].
62.
M.
Dolg
,
U.
Wedig
,
H.
Stoll
, and
H.
Preuss
,
J. Chem. Phys.
86
,
866
(
1987
).
63.
Y. A.
Aoto
,
A. P.
de Lima Batista
,
A.
Köhn
, and
A. G. S.
de Oliveira-Filho
,
J. Chem. Theory Comput.
13
,
5291
(
2017
).
64.
K. T.
Williams
,
Y.
Yao
,
J.
Li
,
L.
Chen
,
H.
Shi
,
M.
Motta
,
C.
Niu
,
U.
Ray
,
S.
Guo
,
R. J.
Anderson
,
J.
Li
,
L. N.
Tran
,
C.-N.
Yeh
,
B.
Mussard
,
S.
Sharma
,
F.
Bruneval
,
M.
van Schilfgaarde
,
G. H.
Booth
,
G. K.-L.
Chan
,
S.
Zhang
,
E.
Gull
,
D.
Zgid
,
A.
Millis
,
C. J.
Umrigar
, and
L. K.
Wagner
, “
Direct comparison of many-body methods for realistic electronic Hamiltonians
,”
Phys. Rev. X
10
,
011041
(
2020
).
You do not currently have access to this content.