In the previous study Wang and Dou [J. Chem. Phys. 158, 224109 (2023)], we have derived a Floquet classical master equation (FCME) to treat nonadiabatic dynamics near metal surfaces under Floquet engineering. We have also proposed a trajectory surface hopping algorithm to solve the FCME. In this study, we map the FCME into a Floquet Fokker–Planck equation in the limit of fast Floquet driving and fast electron motion as compared to nuclear motion. The Fokker–Planck equation is then being solved using Langevin dynamics with explicit friction and random force from the nonadiabatic effects of hybridized electrons and Floquet states. We benchmark the Floquet electronic friction dynamics against Floquet quantum master equation and Floquet surface hopping. We find that Floquet driving results in a violation of the second fluctuation–dissipation theorem, which further gives rise to heating effects.

1.
T.
Oka
and
S.
Kitamura
, “
Floquet engineering of quantum materials
,”
Annu. Rev. Condens. Matter Phys.
10
,
387
408
(
2019
).
2.
M. A.
Sentef
,
J.
Li
,
F.
Künzel
, and
M.
Eckstein
, “
Quantum to classical crossover of Floquet engineering in correlated quantum systems
,”
Phys. Rev. Res.
2
,
033033
(
2020
).
3.
G.
Engelhardt
and
J.
Cao
, “
Dynamical symmetries and symmetry-protected selection rules in periodically driven quantum systems
,”
Phys. Rev. Lett.
126
,
090601
(
2021
).
4.
G.
Cabra
,
I.
Franco
, and
M.
Galperin
, “
Optical properties of periodically driven open nonequilibrium quantum systems
,”
J. Chem. Phys.
152
,
094101
(
2020
).
5.
G.
Günter
,
A. A.
Anappara
,
J.
Hees
,
A.
Sell
,
G.
Biasiol
,
L.
Sorba
,
S.
De Liberato
,
C.
Ciuti
,
A.
Tredicucci
,
A.
Leitenstorfer
, and
R.
Huber
, “
Sub-cycle switch-on of ultrastrong light–matter interaction
,”
Nature
458
,
178
181
(
2009
).
6.
M.
Engel
,
M.
Steiner
,
A.
Lombardo
,
A. C.
Ferrari
,
H. v.
Löhneysen
,
P.
Avouris
, and
R.
Krupke
, “
Light–matter interaction in a microcavity-controlled graphene transistor
,”
Nat. Commun.
3
,
906
(
2012
).
7.
T. W.
Ebbesen
, “
Hybrid light–matter states in a molecular and material science perspective
,”
Acc. Chem. Res.
49
,
2403
2412
(
2016
).
8.
P.
Forn-Díaz
,
L.
Lamata
,
E.
Rico
,
J.
Kono
, and
E.
Solano
, “
Ultrastrong coupling regimes of light-matter interaction
,”
Rev. Mod. Phys.
91
,
025005
(
2019
).
9.
F. J.
Garcia-Vidal
,
C.
Ciuti
, and
T. W.
Ebbesen
, “
Manipulating matter by strong coupling to vacuum fields
,”
Science
373
,
eabd0336
(
2021
).
10.
D. M.
Coles
,
N.
Somaschi
,
P.
Michetti
,
C.
Clark
,
P. G.
Lagoudakis
,
P. G.
Savvidis
, and
D. G.
Lidzey
, “
Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity
,”
Nat. Mater.
13
,
712
719
(
2014
).
11.
K.
Georgiou
,
P.
Michetti
,
L.
Gai
,
M.
Cavazzini
,
Z.
Shen
, and
D. G.
Lidzey
, “
Control over energy transfer between fluorescent BODIPY dyes in a strongly coupled microcavity
,”
ACS Photonics
5
,
258
266
(
2018
).
12.
B.
Xiang
,
R. F.
Ribeiro
,
M.
Du
,
L.
Chen
,
Z.
Yang
,
J.
Wang
,
J.
Yuen-Zhou
, and
W.
Xiong
, “
Intermolecular vibrational energy transfer enabled by microcavity strong light–matter coupling
,”
Science
368
,
665
667
(
2020
).
13.
I.
Gimeno
,
W.
Kersten
,
M. C.
Pallarés
,
P.
Hermosilla
,
M. J.
Martínez-Pérez
,
M. D.
Jenkins
,
A.
Angerer
,
C.
Sánchez-Azqueta
,
D.
Zueco
,
J.
Majer
et al, “
Enhanced molecular spin-photon coupling at superconducting nanoconstrictions
,”
ACS Nano
14
,
8707
8715
(
2020
).
14.
V. C.
Nikolis
,
A.
Mischok
,
B.
Siegmund
,
J.
Kublitski
,
X.
Jia
,
J.
Benduhn
,
U.
Hörmann
,
D.
Neher
,
M. C.
Gather
,
D.
Spoltore
, and
K.
Vandewal
, “
Strong light-matter coupling for reduced photon energy losses in organic photovoltaics
,”
Nat. Commun.
10
,
3706
(
2019
).
15.
M.
Wang
,
M.
Hertzog
, and
K.
Börjesson
, “
Polariton-assisted excitation energy channeling in organic heterojunctions
,”
Nat. Commun.
12
,
1874
(
2021
).
16.
A.
Thomas
,
L.
Lethuillier-Karl
,
K.
Nagarajan
,
R. M. A.
Vergauwe
,
J.
George
,
T.
Chervy
,
A.
Shalabney
,
E.
Devaux
,
C.
Genet
,
J.
Moran
, and
T. W.
Ebbesen
, “
Tilting a ground-state reactivity landscape by vibrational strong coupling
,”
Science
363
,
615
619
(
2019
).
17.
J.
Galego
,
C.
Climent
,
F. J.
Garcia-Vidal
, and
J.
Feist
, “
Cavity casimir-polder forces and their effects in ground-state chemical reactivity
,”
Phys. Rev. X
9
,
021057
(
2019
).
18.
J.
Lather
,
P.
Bhatt
,
A.
Thomas
,
T. W.
Ebbesen
, and
J.
George
, “
Cavity catalysis by cooperative vibrational strong coupling of reactant and solvent molecules
,”
Angew. Chem., Int. Ed.
58
,
10635
10638
(
2019
).
19.
M.
Kuperman
,
L.
Nagar
, and
U.
Peskin
, “
Mechanical stabilization of nanoscale conductors by plasmon oscillations
,”
Nano Lett.
20
,
5531
5537
(
2020
).
20.
S.
Kohler
,
J.
Lehmann
, and
P.
Hänggi
, “
Driven quantum transport on the nanoscale
,”
Phys. Rep.
406
,
379
443
(
2005
).
21.
E.
Cortés
,
R.
Grzeschik
,
S. A.
Maier
, and
S.
Schlücker
, “
Experimental characterization techniques for plasmon-assisted chemistry
,”
Nat. Rev. Chem.
6
,
259
274
(
2022
).
22.
K.
Qian
,
B. C.
Sweeny
,
A. C.
Johnston-Peck
,
W.
Niu
,
J. O.
Graham
,
J. S.
DuChene
,
J.
Qiu
,
Y.-C.
Wang
,
M. H.
Engelhard
,
D.
Su
et al, “
Surface plasmon-driven water reduction: Gold nanoparticle size matters
,”
J. Am. Chem. Soc.
136
,
9842
9845
(
2014
).
23.
P.
Zhang
,
T.
Wang
, and
J.
Gong
, “
Mechanistic understanding of the plasmonic enhancement for solar water splitting
,”
Adv. Mater.
27
,
5328
5342
(
2015
).
24.
L.
Yan
,
F.
Wang
, and
S.
Meng
, “
Quantum mode selectivity of plasmon-induced water splitting on gold nanoparticles
,”
ACS Nano
10
,
5452
5458
(
2016
).
25.
S.
Yu
,
A. J.
Wilson
,
J.
Heo
, and
P. K.
Jain
, “
Plasmonic control of multi-electron transfer and C–C coupling in visible-light-driven CO2 reduction on Au nanoparticles
,”
Nano Lett.
18
,
2189
2194
(
2018
).
26.
H.
Robatjazi
,
H.
Zhao
,
D. F.
Swearer
,
N. J.
Hogan
,
L.
Zhou
,
A.
Alabastri
,
M. J.
McClain
,
P.
Nordlander
, and
N. J.
Halas
, “
Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles
,”
Nat. Commun.
8
,
27
(
2017
).
27.
E. B.
Creel
,
E. R.
Corson
,
J.
Eichhorn
,
R.
Kostecki
,
J. J.
Urban
, and
B. D.
McCloskey
, “
Directing selectivity of electrochemical carbon dioxide reduction using plasmonics
,”
ACS Energy Lett.
4
,
1098
1105
(
2019
).
28.
J.
Langer
,
D.
Jimenez de Aberasturi
,
J.
Aizpurua
,
R. A.
Alvarez-Puebla
,
B.
Auguié
,
J. J.
Baumberg
,
G. C.
Bazan
,
S. E.
Bell
,
A.
Boisen
,
A. G.
Brolo
et al, “
Present and future of surface-enhanced Raman scattering
,”
ACS Nano
14
,
28
117
(
2019
).
29.
J. L.
Payton
,
S. M.
Morton
,
J. E.
Moore
, and
L.
Jensen
, “
A hybrid atomistic electrodynamics–quantum mechanical approach for simulating surface-enhanced Raman scattering
,”
Acc. Chem. Res.
47
,
88
99
(
2014
).
30.
Y.
Wang
and
W.
Dou
, “
Nonadiabatic dynamics near metal surface with periodic drivings: A Floquet surface hopping algorithm
,”
J. Chem. Phys.
158
,
224109
(
2023
).
31.
K.
Wu
,
J.
Chen
,
J. R.
McBride
, and
T.
Lian
, “
Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition
,”
Science
349
,
632
635
(
2015
).
32.
C. L.
Box
,
Y.
Zhang
,
R.
Yin
,
B.
Jiang
, and
R. J.
Maurer
, “
Determining the effect of hot electron dissipation on molecular scattering experiments at metal surfaces
,”
JACS Au
1
,
164
173
(
2020
).
33.
J.-T.
,
B.-Z.
Hu
,
P.
Hedegård
, and
M.
Brandbyge
, “
Semi-classical generalized Langevin equation for equilibrium and nonequilibrium molecular dynamics simulation
,”
Prog. Surf. Sci.
94
,
21
40
(
2019
).
34.
Y.
Litman
,
E. S.
Pós
,
C. L.
Box
,
R.
Martinazzo
,
R. J.
Maurer
, and
M.
Rossi
, “
Dissipative tunneling rates through the incorporation of first-principles electronic friction in instanton rate theory. I. Theory
,”
J. Chem. Phys.
156
,
194106
(
2022
).
35.
W.
Dou
,
A.
Nitzan
, and
J. E.
Subotnik
, “
Frictional effects near a metal surface
,”
J. Chem. Phys.
143
,
054103
(
2015
).
You do not currently have access to this content.