We evaluate neural network (NN) coarse-grained (CG) force fields compared to traditional CG molecular mechanics force fields. We conclude that NN force fields are able to extrapolate and sample from unseen regions of the free energy surface when trained with limited data. Our results come from 88 NN force fields trained on different combinations of clustered free energy surfaces from four protein mapped trajectories. We used a statistical measure named total variation similarity to assess the agreement between reference free energy surfaces from mapped atomistic simulations and CG simulations from trained NN force fields. Our conclusions support the hypothesis that NN CG force fields trained with samples from one region of the proteins’ free energy surface can, indeed, extrapolate to unseen regions. Additionally, the force matching error was found to only be weakly correlated with a force field’s ability to reconstruct the correct free energy surface.

1.
G. S.
Ayton
and
G. A.
Voth
, “
Simulation of biomolecular systems at multiple length and time scales
,”
Int. J. Multiscale Comput. Eng.
2
,
291
(
2004
).
2.
S.
Izvekov
and
G. A.
Voth
, “
A multiscale coarse-graining method for biomolecular systems
,”
J. Phys. Chem. B
109
,
2469
2473
(
2005
).
3.
T. T.
Foley
,
M. S.
Shell
, and
W. G.
Noid
, “
The impact of resolution upon entropy and information in coarse-grained models
,”
J. Chem. Phys.
143
,
243104
(
2015
).
4.
W. G.
Noid
, “
Perspective: Coarse-grained models for biomolecular systems
,”
J. Chem. Phys.
139
,
090901
(
2013
).
5.
S.
Kmiecik
,
D.
Gront
,
M.
Kolinski
,
L.
Wieteska
,
A. E.
Dawid
, and
A.
Kolinski
, “
Coarse-grained protein models and their applications
,”
Chem. Rev.
116
,
7898
7936
(
2016
).
6.
V.
Voynov
and
J. A.
Caravella
,
Therapeutic Proteins: Methods and Protocols
(
Springer
,
2012
).
7.
C.
Clementi
, “
Coarse-grained models of protein folding: Toy models or predictive tools?
,”
Curr. Opin. Struct. Biol.
18
,
10
15
(
2008
), part of Special Issue: Folding and binding/Protein-nucleic acid interactions.
8.
K. M.
Kidder
,
R. J.
Szukalo
, and
W. G.
Noid
, “
Energetic and entropic considerations for coarse-graining
,”
Eur. Phys. J. B
94
,
153
(
2021
).
9.
J.
Jin
,
A. J.
Pak
,
A. E. P.
Durumeric
,
T. D.
Loose
, and
G. A.
Voth
, “
Bottom-up coarse-graining: Principles and perspectives
,”
J. Chem. Theory Comput.
18
,
5759
5791
(
2022
).
10.
W. G.
Noid
, “
Systematic methods for structurally consistent coarse-grained models
,” in
Biomolecular Simulations: Methods and Protocols
, edited by
L.
Monticelli
and
E.
Salonen
(
Humana Press
,
Totowa, NJ
,
2013
), pp.
487
531
.
11.
M. G.
Saunders
and
G. A.
Voth
, “
Coarse-graining methods for computational biology
,”
Annu. Rev. Biophys.
42
,
73
93
(
2013
).
12.
E.
Brini
,
E. A.
Algaer
,
P.
Ganguly
,
C.
Li
,
F.
Rodríguez-Ropero
, and
N. F. A.
van der Vegt
, “
Systematic coarse-graining methods for soft matter simulations – A review
,”
Soft Matter
9
,
2108
2119
(
2013
).
13.
Z.
Li
,
G. P.
Wellawatte
,
M.
Chakraborty
,
H. A.
Gandhi
,
C.
Xu
, and
A. D.
White
, “
Graph neural network based coarse-grained mapping prediction
,”
Chem. Sci.
11
,
9524
9531
(
2020
).
14.
M.
Chakraborty
,
C.
Xu
, and
A. D.
White
, “
Encoding and selecting coarse-grain mapping operators with hierarchical graphs
,”
J. Chem. Phys.
149
,
134106
(
2018
).
15.
M.
Chakraborty
,
J.
Xu
, and
A. D.
White
, “
Is preservation of symmetry necessary for coarse-graining?
,”
Phys. Chem. Chem. Phys.
22
,
14998
15005
(
2020
).
16.
C.
Empereur-Mot
,
L.
Pesce
,
G.
Doni
,
D.
Bochicchio
,
R.
Capelli
,
C.
Perego
, and
G. M.
Pavan
, “
Swarm-CG: Automatic parametrization of bonded terms in MARTINI-based coarse-grained models of simple to complex molecules via fuzzy self-tuning particle swarm optimization
,”
ACS Omega
5
,
32823
32843
(
2020
).
17.
Z.
Zhang
,
L.
Lu
,
W. G.
Noid
,
V.
Krishna
,
J.
Pfaendtner
, and
G. A.
Voth
, “
A systematic methodology for defining coarse-grained sites in large biomolecules
,”
Biophys. J.
95
,
5073
5083
(
2008
).
18.
J. W.
Ponder
and
D. A.
Case
, “
Force fields for protein simulations
,” in
Protein Simulations
,
Advances in Protein Chemistry
(
Academic Press
,
2003
), Vol.
66
, pp.
27
85
.
19.
J.
Köhler
,
Y.
Chen
,
A.
Krämer
,
C.
Clementi
, and
F.
Noé
, “
Flow-matching: Efficient coarse-graining of molecular dynamics without forces
,”
J. Chem. Theory Comput.
19
,
942
(
2022
); arXiv:2203.11167 (
2022
).
20.
J.
Wang
,
S.
Olsson
,
C.
Wehmeyer
,
A.
Pérez
,
N. E.
Charron
,
G.
de Fabritiis
,
F.
Noé
, and
C.
Clementi
, “
Machine learning of coarse-grained molecular dynamics force fields
,”
ACS Cent. Sci.
5
,
755
767
(
2019
).
21.
A. E.
Durumeric
,
N. E.
Charron
,
C.
Templeton
,
F.
Musil
,
K.
Bonneau
,
A. S.
Pasos-Trejo
,
Y.
Chen
,
A.
Kelkar
,
F.
Noé
, and
C.
Clementi
, “
Machine learned coarse-grained protein force-fields: Are we there yet?
,”
Curr. Opin. Struct. Biol.
79
,
102533
(
2023
).
22.
D.
Reith
,
M.
Pütz
, and
F.
Müller-Plathe
, “
Deriving effective mesoscale potentials from atomistic simulations
,”
J. Comput. Chem.
24
,
1624
1636
(
2003
).
23.
Z.
Jarin
,
J.
Newhouse
, and
G. A.
Voth
, “
Coarse-grained force fields from the perspective of statistical mechanics: Better understanding of the origins of a MARTINI hangover
,”
J. Chem. Theory Comput.
17
,
1170
1180
(
2021
).
24.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
25.
S.
Thaler
and
J.
Zavadlav
, “
Learning neural network potentials from experimental data via differentiable trajectory reweighting
,”
Nat. Commun.
12
,
6884
(
2021
).
26.
K. T.
Schütt
,
H. E.
Sauceda
,
P.-J.
Kindermans
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
SchNet–A deep learning architecture for molecules and materials
,”
J. Chem. Phys.
148
,
241722
(
2018
).
27.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
, “
ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost
,”
Chem. Sci.
8
,
3192
3203
(
2017
).
28.
M.
Majewski
,
A.
Pérez
,
P.
Thölke
,
S.
Doerr
,
N. E.
Charron
,
T.
Giorgino
,
B. E.
Husic
,
C.
Clementi
,
F.
Noé
, and
G.
De Fabritiis
, “
Machine learning coarse-grained potentials of protein thermodynamics
,” arXiv:2212.07492 (
2022
).
29.
B. E.
Husic
,
N. E.
Charron
,
D.
Lemm
,
J.
Wang
,
A.
Pérez
,
M.
Majewski
,
A.
Krämer
,
Y.
Chen
,
S.
Olsson
,
G.
de Fabritiis
,
F.
Noé
, and
C.
Clementi
, “
Coarse graining molecular dynamics with graph neural networks
,”
J. Chem. Phys.
153
,
194101
(
2020
).
30.
S.
Doerr
,
M.
Majewsk
,
A.
Pérez
,
A.
Krämer
,
C.
Clementi
,
F.
Noe
,
T.
Giorgino
, and
G. D.
Fabritiis
, “
TorchMD: A deep learning framework for molecular simulations
,” arXiv:2012.12106[physics.chem-ph] (
2020
).
31.
L.
Zhang
,
J.
Han
,
H.
Wang
,
R.
Car
, and
W.
E
, “
DeePCG: Constructing coarse-grained models via deep neural networks
,”
J. Chem. Phys.
149
,
034101
(
2018
).
32.
X.
Fu
,
Z.
Wu
,
W.
Wang
,
T.
Xie
,
S.
Keten
,
R.
Gomez-Bombarelli
, and
T.
Jaakkola
, “
Forces are not enough: Benchmark and critical evaluation for machine learning force fields with molecular simulations
,” arXiv:2210.07237 (
2022
).
33.
F.
Noé
,
A.
Tkatchenko
,
K.-R.
Müller
, and
C.
Clementi
, “
Machine learning for molecular simulation
,”
Annu. Rev. Phys. Chem.
71
,
361
390
(
2020
).
34.
A.
Khorshidi
and
A. A.
Peterson
, “
Amp: A modular approach to machine learning in atomistic simulations
,”
Comput. Phys. Commun.
207
,
310
324
(
2016
).
35.
S.
Chmiela
,
A.
Tkatchenko
,
H. E.
Sauceda
,
I.
Poltavsky
,
K. T.
Schütt
, and
K.-R.
Müller
, “
Machine learning of accurate energy-conserving molecular force fields
,”
Sci. Adv.
3
,
e1603015
(
2017
).
36.
P.
Thölke
and
G.
De Fabritiis
, “
Equivariant transformers for neural network based molecular potentials
,” in The Tenth International Conference on Learning Representations (ICLR 2022) (OpenReview.net,
2022
).
37.
C.
Zeni
,
A.
Anelli
,
A.
Glielmo
, and
K.
Rossi
, “
Exploring the robust extrapolation of high-dimensional machine learning potentials
,”
Phys. Rev. B
105
,
165141
(
2022
).
38.
P.
Robustelli
,
S.
Piana
, and
D. E.
Shaw
, “
Developing a molecular dynamics force field for both folded and disordered protein states
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
E4758
E4766
(
2018
).
39.
T.
Ignjatovic
,
J.-C.
Yang
,
J.
Butler
,
D.
Neuhaus
, and
K.
Nagai
, “
Structural basis of the interaction between P-element somatic inhibitor and U1-70k essential for the alternative splicing of P-element transposase
,”
J. Mol. Biol.
351
,
52
65
(
2005
).
40.
A. J.
Nicoll
and
R. K.
Allemann
, “
Nucleophilic and general acid catalysis at physiological pH by a designed miniature esterase
,”
Org. Biomol. Chem.
2
,
2175
2180
(
2004
).
41.
B.
Barua
,
J. C.
Lin
,
V. D.
Williams
,
P.
Kummler
,
J. W.
Neidigh
, and
N. H.
Andersen
, “
The Trp-cage: Optimizing the stability of a globular miniprotein
,”
Protein Eng., Des. Sel.
21
,
171
185
(
2008
).
42.
S.
Zhang
,
K.
Iwata
,
M.
Lachenmann
,
J.
Peng
,
S.
Li
,
E.
Stimson
,
Y. a.
Lu
,
A.
Felix
,
J.
Maggio
, and
J.
Lee
, “
The Alzheimer’s peptide aβ adopts a collapsed coil structure in water
,”
J. Struct. Biol.
130
,
130
141
(
2000
).
43.
L.
Molgedey
and
H. G.
Schuster
, “
Separation of a mixture of independent signals using time delayed correlations
,”
Phys. Rev. Lett.
72
,
3634
3637
(
1994
).
44.
Y.
Naritomi
and
S.
Fuchigami
, “
Slow dynamics of a protein backbone in molecular dynamics simulation revealed by time-structure based independent component analysis
,”
J. Chem. Phys.
139
,
215102
(
2013
).
45.
S.
Schultze
and
H.
Grubmüller
, “
Time-lagged independent component analysis of random walks and protein dynamics
,”
J. Chem. Theory Comput.
17
,
5766
5776
(
2021
).
46.
S.
Verdú
, “
Total variation distance and the distribution of relative information
,” in
2014 Information Theory and Applications Workshop (ITA)
(
IEEE
,
2014
), pp.
1
3
.
47.
T.
Chen
and
S.
Kiefer
,
On the Total Variation Distance of Labelled Markov Chains
(
Association for Computing Machinery
,
New York
,
2014
).
48.
R. B.
Best
and
G.
Hummer
, “
Optimized molecular dynamics force fields applied to the helix–coil transition of polypeptides
,”
J. Phys. Chem. B
113
,
9004
9015
(
2009
).
49.
K.
Lindorff-Larsen
,
S.
Piana
,
K.
Palmo
,
P.
Maragakis
,
J. L.
Klepeis
,
R. O.
Dror
, and
D. E.
Shaw
, “
Improved side-chain torsion potentials for the Amber ff99SB protein force field
,”
Proteins
78
,
1950
1958
(
2010
).
50.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
935
(
1983
).
51.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1–2
,
19
25
(
2015
).
52.
See http://www.mdtutorials.com/gmx/lysozyme/index.html for GROMACS standard protocol.
53.
N. H.
Chmiel
,
D. C.
Rio
, and
J. A.
Doudna
, “
Distinct contributions of KH domains to substrate binding affinity of drosophila P-element somatic inhibitor protein
,”
RNA
12
,
283
291
(
2006
).
54.
R.
Zhou
, “
Trp-cage: Folding free energy landscape in explicit water
,”
Proc. Natl. Acad. Sci. U. S. A.
100
,
13280
13285
(
2003
).
55.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
, “
Canonical sampling through velocity rescaling
,”
J. Chem. Phys.
126
,
014101
(
2007
).
56.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
7190
(
1981
).
57.
N.
Michaud-Agrawal
,
E. J.
Denning
,
T. B.
Woolf
, and
O.
Beckstein
, “
MDAnalysis: A toolkit for the analysis of molecular dynamics simulations
,”
J. Comput. Chem.
32
,
2319
2327
(
2011
).
58.
R. J.
Gowers
,
M.
Linke
,
J.
Barnoud
,
T. J.
Reddy
,
M. N.
Melo
,
S. L.
Seyler
,
D. L.
Dotson
,
J.
Domanski
,
S.
Buchoux
,
I. M.
Kenney
, and
O.
Beckstein
, “
MDAnalysis: A Python package for the rapid analysis of molecular dynamics simulations
,” in
Proceedings of the 15th Python in Science Conference (SciPy2016)
, 11–17 July
2016
, Austin, TX, pp. 98–105.
59.
60.
S. J.
Marrink
,
A. H.
de Vries
, and
A. E.
Mark
, “
Coarse grained model for semiquantitative lipid simulations
,”
J. Phys. Chem. B
108
,
750
760
(
2004
).
61.
S. J.
Marrink
,
H. J.
Risselada
,
S.
Yefimov
,
D. P.
Tieleman
, and
A. H.
de Vries
, “
The MARTINI force field: Coarse grained model for biomolecular simulations
,”
J. Phys. Chem. B
111
,
7812
7824
(
2007
).
62.
A.
Davtyan
,
N. P.
Schafer
,
W.
Zheng
,
C.
Clementi
,
P. G.
Wolynes
, and
G. A.
Papoian
, “
AWSEM-MD: Protein structure prediction using coarse-grained physical potentials and bioinformatically based local structure biasing
,”
J. Phys. Chem. B
116
,
8494
8503
(
2012
).
63.
W.
Lu
,
C.
Bueno
,
N. P.
Schafer
,
J.
Moller
,
S.
Jin
,
X.
Chen
,
M.
Chen
,
X.
Gu
,
A.
Davtyan
,
J. J.
de Pablo
, and
P. G.
Wolynes
, “
OpenAWSEM with Open3SPN2: A fast, flexible, and accessible framework for large-scale coarse-grained biomolecular simulations
,”
PLoS Comput. Biol.
17
,
e1008308
(
2021
).
64.
A. B.
Poma
,
M.
Cieplak
, and
P. E.
Theodorakis
, “
Combining the MARTINI and structure-based coarse-grained approaches for the molecular dynamics studies of conformational transitions in proteins
,”
J. Chem. Theory Comput.
13
,
1366
1374
(
2017
).
66.
67.
G.
Ciccotti
,
R.
Kapral
, and
E.
Vanden-Eijnden
, “
Blue moon sampling, vectorial reaction coordinates, and unbiased constrained dynamics
,”
ChemPhysChem
6
,
1809
1814
(
2005
).
68.
A.
Krämer
,
A. E. P.
Durumeric
,
N. E.
Charron
,
Y.
Chen
,
C.
Clementi
, and
F.
Noé
, “
Statistically optimal force aggregation for coarse-graining molecular dynamics
,”
J. Phys. Chem. Lett.
14
,
3970
3979
(
2023
).
69.
L. E.
Baum
and
T.
Petrie
, “
Statistical inference for probabilistic functions of finite state Markov chains
,”
Ann. Math. Stat.
37
,
1554
1563
(
1966
).
70.
L.
Rabiner
, “
A tutorial on hidden Markov models and selected applications in speech recognition
,”
Proc. IEEE
77
,
257
286
(
1989
).
71.
M. K.
Scherer
,
B.
Trendelkamp-Schroer
,
F.
Paul
,
G.
Pérez-Hernández
,
M.
Hoffmann
,
N.
Plattner
,
C.
Wehmeyer
,
J.-H.
Prinz
, and
F.
Noé
, “
PyEMMA 2: A software package for estimation, validation, and analysis of Markov models
,”
J. Chem. Theory Comput.
11
,
5525
5542
(
2015
).
72.
R.
Zwanzig
, “
From classical dynamics to continuous time random walks
,”
J. Stat. Phys.
30
,
255
262
(
1983
).
73.
V. S.
Pande
,
K.
Beauchamp
, and
G. R.
Bowman
, “
Everything you wanted to know about Markov state models but were afraid to ask
,”
Methods
52
,
99
105
(
2010
), part of Special Issue: Protein Folding.
74.
B. E.
Husic
and
V. S.
Pande
, “
Markov state models: From an art to a science
,”
J. Am. Chem. Soc.
140
,
2386
2396
(
2018
).
75.
C.
Kolloff
and
S.
Olsson
, “
Machine learning in molecular dynamics simulations of biomolecular systems
,” arXiv:2205.03135 (
2022
).
76.
F.
Noé
,
I.
Horenko
,
C.
Schütte
, and
J. C.
Smith
, “
Hierarchical analysis of conformational dynamics in biomolecules: Transition networks of metastable states
,”
J. Chem. Phys.
126
,
04B617
(
2007
).
77.
F.
Noé
, “
Probability distributions of molecular observables computed from Markov models
,”
J. Chem. Phys.
128
,
244103
(
2008
).
78.
J. D.
Chodera
and
F.
Noé
, “
Probability distributions of molecular observables computed from Markov models. II. Uncertainties in observables and their time-evolution
,”
J. Chem. Phys.
133
,
09B606
(
2010
).
79.
N.-V.
Buchete
and
G.
Hummer
, “
Coarse master equations for peptide folding dynamics
,”
J. Phys. Chem. B
112
,
6057
6069
(
2008
).
80.
C.
Schütte
,
F.
Noé
,
J.
Lu
,
M.
Sarich
, and
E.
Vanden-Eijnden
, “
Markov state models based on milestoning
,”
J. Chem. Phys.
134
,
05B609
(
2011
).
81.
G.
Pérez-Hernández
,
F.
Paul
,
T.
Giorgino
,
G.
De Fabritiis
, and
F.
Noé
, “
Identification of slow molecular order parameters for Markov model construction
,”
J. Chem. Phys.
139
,
015102
(
2013
).
82.
S.
Lloyd
, “
Least squares quantization in PCM
,”
IEEE Trans. Inf. Theory
28
,
129
137
(
1982
).
83.
H.
Wu
and
F.
Noé
, “
Variational approach for learning Markov processes from time series data
,”
J. Nonlinear Sci.
30
,
23
66
(
2020
).
84.
J.-H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schütte
, and
F.
Noé
, “
Markov models of molecular kinetics: Generation and validation
,”
J. Chem. Phys.
134
,
174105
(
2011
).
85.
A.
Papoulis
, “
Bayes’ theorem in statistics and Bayes’ theorem in statistics (reexamined)
,” in
Probability, Random Variables, and Stochastic Processes
,
2nd ed.
(
McGraw-Hill
,
NY
,
1984
), pp.
38
114
.
86.
E.
Christoforou
,
H.
Leontiadou
,
F.
Noé
,
J.
Samios
,
I. Z.
Emiris
, and
Z.
Cournia
, “
Investigating the bioactive conformation of Angiotensin II using Markov state modeling revisited with web-scale clustering
,”
J. Chem. Theory Comput.
18
,
5636
5648
(
2022
).
87.
K.
Schutt
,
P.
Kessel
,
M.
Gastegger
,
K.
Nicoli
,
A.
Tkatchenko
, and
K.-R.
Muller
, “
SchNetPack: A deep learning toolbox for atomistic systems
,”
J. Chem. Theory Comput.
15
,
448
455
(
2018
).
88.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
,
J.
Bradbury
,
G.
Chanan
,
T.
Killeen
,
Z.
Lin
,
N.
Gimelshein
,
L.
Antiga
,
A.
Desmaison
,
A.
Kopf
,
E.
Yang
,
Z.
DeVito
,
M.
Raison
,
A.
Tejani
,
S.
Chilamkurthy
,
B.
Steiner
,
L.
Fang
,
J.
Bai
, and
S.
Chintala
, “
PyTorch: An imperative style, high-performance deep learning library
,” in
Advances in Neural Information Processing Systems 32
, edited by
H.
Wallach
,
H.
Larochelle
,
A.
Beygelzimer
,
F.
d’Alché Buc
,
E.
Fox
, and
R.
Garnett
(
Curran Associates, Inc.
,
2019
), pp.
8024
8035
.
89.
B. M. H.
Bruininks
,
P. C. T.
Souza
, and
S. J.
Marrink
, “
A practical view of the Martini force field
,” in
Biomolecular Simulations: Methods and Protocols
(
Springer
,
NY
,
2019
), pp.
105
127
.
90.
S. J.
Marrink
and
A. E.
Mark
, “
The mechanism of vesicle fusion as revealed by molecular dynamics simulations
,”
J. Am. Chem. Soc.
125
,
11144
11145
(
2003
).
91.
S. J.
Marrink
and
A. E.
Mark
, “
Molecular dynamics simulation of the formation, structure, and dynamics of small phospholipid vesicles
,”
J. Am. Chem. Soc.
125
,
15233
15242
(
2003
).
92.
L.
Monticelli
,
S. K.
Kandasamy
,
X.
Periole
,
R. G.
Larson
,
D. P.
Tieleman
, and
S.-J.
Marrink
, “
The MARTINI coarse-grained force field: Extension to proteins
,”
J. Chem. Theory Comput.
4
,
819
834
(
2008
).
93.
D. H.
de Jong
,
G.
Singh
,
W. F. D.
Bennett
,
C.
Arnarez
,
T. A.
Wassenaar
,
L. V.
Schafer
,
X.
Periole
,
D. P.
Tieleman
, and
S. J.
Marrink
, “
Improved parameters for the Martini coarse-grained protein force field
,”
J. Chem. Theory Comput.
9
,
687
697
(
2013
).
94.
C. A.
López
,
G.
Bellesia
,
A.
Redondo
,
P.
Langan
,
S. P.
Chundawat
,
B. E.
Dale
,
S. J.
Marrink
, and
S.
Gnanakaran
, “
MARTINI coarse-grained model for crystalline cellulose microfibers
,”
J. Phys. Chem. B
119
,
465
473
(
2015
).
95.
J. J.
Uusitalo
,
H. I.
Ingólfsson
,
P.
Akhshi
,
D. P.
Tieleman
, and
S. J.
Marrink
, “
Martini coarse-grained force field: Extension to DNA
,”
J. Chem. Theory Comput.
11
,
3932
3945
(
2015
).
96.
D. H.
de Jong
,
N.
Liguori
,
T.
van den Berg
,
C.
Arnarez
,
X.
Periole
, and
S. J.
Marrink
, “
Atomistic and coarse grain topologies for the cofactors associated with the photosystem II core complex
,”
J. Phys. Chem. B
119
,
7791
7803
(
2015
).
97.
X.
Chen
,
M.
Chen
, and
P. G.
Wolynes
, “
Exploring the interplay between disordered and ordered oligomer channels on the aggregation energy landscapes of α-synuclein
,”
J. Phys. Chem. B
126
,
5250
5261
(
2022
).
98.
X.
Chen
,
M.
Chen
,
N. P.
Schafer
, and
P. G.
Wolynes
, “
Exploring the interplay between fibrillization and amorphous aggregation channels on the energy landscapes of tau repeat isoforms
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
4125
4130
(
2020
).
99.
W.
Zheng
,
M.-Y.
Tsai
,
M.
Chen
, and
P. G.
Wolynes
, “
Exploring the aggregation free energy landscape of the amyloid-β protein (1–40)
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
11835
11840
(
2016
).
100.
H.
Klem
,
G. M.
Hocky
, and
M.
McCullagh
, “
Size-and-shape space Gaussian mixture models for structural clustering of molecular dynamics trajectories
,”
J. Chem. Theory Comput.
18
,
3218
(
2022
).
101.
S.
Stocker
,
J.
Gasteiger
,
F.
Becker
,
S.
Günnemann
, and
J. T.
Margraf
, “
How robust are modern graph neural network potentials in long and hot molecular dynamics simulations?
,”
Mach. Learn.: Sci. Technol.
3
,
045010
(
2022
).
102.
M.
Schaarschmidt
,
M.
Riviere
,
A. M.
Ganose
,
J. S.
Spencer
,
A. L.
Gaunt
,
J.
Kirkpatrick
,
S.
Axelrod
,
P. W.
Battaglia
, and
J.
Godwin
, “
Learned force fields are ready for ground state catalyst discovery
,” arXiv:2209.12466 (
2022
).

Supplementary Material

You do not currently have access to this content.