In silico property prediction based on density functional theory (DFT) is increasingly performed for crystalline materials. Whether quantitative agreement with experiment can be achieved with current methods is often an unresolved question, and may require detailed examination of physical effects such as electron correlation, reciprocal space sampling, phonon anharmonicity, and nuclear quantum effects (NQE), among others. In this work, we attempt first-principles equation of state prediction for the crystalline materials ScF3 and CaZrF6, which are known to exhibit negative thermal expansion (NTE) over a broad temperature range. We develop neural network (NN) potentials for both ScF3 and CaZrF6 trained to extensive DFT data, and conduct direct molecular dynamics prediction of the equation(s) of state over a broad temperature/pressure range. The NN potentials serve as surrogates of the DFT Hamiltonian with enhanced computational efficiency allowing for simulations with larger supercells and inclusion of NQE utilizing path integral approaches. The conclusion of the study is mixed: while some equation of state behavior is predicted in semiquantitative agreement with experiment, the pressure-induced softening phenomenon observed for ScF3 is not captured in our simulations. We show that NQE have a moderate effect on NTE at low temperature but does not significantly contribute to equation of state predictions at increasing temperature. Overall, while the NN potentials are valuable for property prediction of these NTE (and related) materials, we infer that a higher level of electron correlation, beyond the generalized gradient approximation density functional employed here, is necessary for achieving quantitative agreement with experiment.

1.
A.
Jain
,
S. P.
Ong
,
G.
Hautier
,
W.
Chen
,
W. D.
Richards
,
S.
Dacek
,
S.
Cholia
,
D.
Gunter
,
D.
Skinner
,
G.
Ceder
, and
K. A.
Persson
, “
Commentary: The materials Project: A materials genome approach to accelerating materials innovation
,”
APL Mater.
1
,
011002
(
2013
).
2.
A. R.
Oganov
,
C. J.
Pickard
,
Q.
Zhu
, and
R. J.
Needs
, “
Structure prediction drives materials discovery
,”
Nat. Rev. Mater.
4
,
331
348
(
2019
).
3.
E.
Kiely
,
R.
Zwane
,
R.
Fox
,
A. M.
Reilly
, and
S.
Guerin
, “
Density functional theory predictions of the mechanical properties of crystalline materials
,”
CrystEngComm
23
,
5697
5710
(
2021
).
4.
A.
Jain
,
Y.
Shin
, and
K. A.
Persson
, “
Computational predictions of energy materials using density functional theory
,”
Nat. Rev. Mater.
1
,
15004
15013
(
2016
).
5.
C. J.
Bartel
, “
Review of computational approaches to predict the thermodynamic stability of inorganic solids
,”
J. Mater. Sci.
57
,
10475
10498
(
2022
).
6.
W.
Sun
,
C. J.
Bartel
,
E.
Arca
,
S. R.
Bauers
,
B.
Matthews
,
B.
Orvañanos
,
B.-R.
Chen
,
M. F.
Toney
,
L. T.
Schelhas
,
W.
Tumas
,
J.
Tate
,
A.
Zakutayev
,
S.
Lany
,
A. M.
Holder
, and
G.
Ceder
, “
A map of the inorganic ternary metal nitrides
,”
Nat. Mater.
18
,
732
739
(
2019
).
7.
Q.
Li
,
K.
Lin
,
Z.
Liu
,
L.
Hu
,
Y.
Cao
,
J.
Chen
, and
X.
Xing
, “
Chemical diversity for tailoring negative thermal expansion
,”
Chem. Rev.
122
,
8438
8486
(
2022
).
8.
G.
Ventura
and
M.
Perfetti
,
Thermal Properties of Solids at Room and Cryogenic Temperatures
,
International Cryogenics Monograph Series
(
Springer
,
Dordrecht, Netherlands
,
2014
).
9.
G.
Hartwig
,
Polymer Properties at Room and Cryogenic Temperatures
,
International Cryogenics Monograph Series
(
Springer
,
1994
).
10.
Y.
Rong
,
M.
Li
,
J.
Chen
,
M.
Zhou
,
K.
Lin
,
L.
Hu
,
W.
Yuan
,
W.
Duan
,
J.
Deng
, and
X.
Xing
, “
Large negative thermal expansion in non-perovskite lead-free ferroelectric Sn2P2S6
,”
Phys. Chem. Chem. Phys.
18
,
6247
6251
(
2016
).
11.
D.
Dubbeldam
,
K. S.
Walton
,
D. E.
Ellis
,
R. Q.
Snurr
,
D.
Dubbeldam
,
R. Q.
Snurr
,
K. S.
Walton
, and
D. E.
Ellis
, “
Exceptional negative thermal expansion in isoreticular metal–organic frameworks
,”
Angew. Chem., Int. Ed.
46
,
4496
4499
(
2007
).
12.
M. K.
Gupta
,
B.
Singh
,
R.
Mittal
,
S.
Rols
, and
S. L.
Chaplot
, “
Lattice dynamics and thermal expansion behavior in the metal cyanides M CN (M = Cu, Ag, Au): Neutron inelastic scattering and first-principles calculations
,”
Phys. Rev. B
93
,
134307
(
2016
).
13.
J. P.
Attfield
, “
Mechanisms and materials for NTE
,”
Front. Chem.
6
,
371
(
2018
).
14.
T. A.
Mary
,
J. S.
Evans
,
T.
Vogt
, and
A. W.
Sleight
, “
Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8
,”
Science
272
,
90
92
(
1996
).
15.
J. S.
Evans
,
T. A.
Mary
, and
A. W.
Sleight
, “
Negative thermal expansion materials
,”
Physica B
241–243
,
311
316
(
1997
).
16.
T.
Chatterji
,
T. C.
Hansen
,
M.
Brunelli
, and
P. F.
Henry
, “
Negative thermal expansion of ReO3 in the extended temperature range
,”
Appl. Phys. Lett.
94
,
241902
(
2009
).
17.
M.
Dapiaggi
and
A. N.
Fitch
, “
Negative (and very low) thermal expansion in ReO3 from 5 to 300 K
,”
J. Appl. Crystallogr.
42
,
253
258
(
2009
).
18.
J. Z.
Tao
and
A. W.
Sleight
, “
The role of rigid unit modes in negative thermal expansion
,”
J. Solid State Chem.
173
,
442
448
(
2003
).
19.
B. K.
Greve
,
K. L.
Martin
,
P. L.
Lee
,
P. J.
Chupas
,
K. W.
Chapman
, and
A. P.
Wilkinson
, “
Pronounced negative thermal expansion from a simple structure: Cubic ScF3
,”
J. Am. Chem. Soc.
132
,
15496
15498
(
2010
).
20.
B. J.
Kennedy
and
T.
Vogt
, “
Powder X-ray diffraction study of the rhombohedral to cubic phase transition in TiF3
,”
Mater. Res. Bull.
37
,
77
83
(
2002
).
21.
S.
Chaudhuri
,
P. J.
Chupas
,
M.
Wilson
,
P.
Madden
, and
C. P.
Grey
, “
Study of the nature and mechanism of the rhombohedral-to-cubic phase transition in α-AlF3 with molecular dynamics simulations
,”
J. Phys. Chem. B
108
,
3437
3445
(
2004
).
22.
Z.
Wei
,
L.
Tan
,
G.
Cai
,
A. E.
Phillips
,
I.
da Silva
,
M. G.
Kibble
, and
M. T.
Dove
, “
Colossal pressure-induced softening in scandium fluoride
,”
Phys. Rev. Lett.
124
,
255502
(
2020
).
23.
C.
Yang
,
P.
Tong
,
J. C.
Lin
,
X. G.
Guo
,
K.
Zhang
,
M.
Wang
,
Y.
Wu
,
S.
Lin
,
P. C.
Huang
,
W.
Xu
,
W. H.
Song
, and
Y. P.
Sun
, “
Size effects on negative thermal expansion in cubic ScF3
,”
Appl. Phys. Lett.
109
,
023110
(
2016
).
24.
L.
Hu
,
F.
Qin
,
A.
Sanson
,
L. F.
Huang
,
Z.
Pan
,
Q.
Li
,
Q.
Sun
,
L.
Wang
,
F.
Guo
,
U.
Aydemir
,
Y.
Ren
,
C.
Sun
,
J.
Deng
,
G.
Aquilanti
,
J. M.
Rondinelli
,
J.
Chen
, and
X.
Xing
, “
Localized symmetry breaking for tuning thermal expansion in ScF3 nanoscale frameworks
,”
J. Am. Chem. Soc.
140
,
4477
4480
(
2018
).
25.
C. R.
Morelock
,
B. K.
Greve
,
L. C.
Gallington
,
K. W.
Chapman
, and
A. P.
Wilkinson
, “
Negative thermal expansion and compressibility of Sc1−xYxF3 (x ≤ 0.25)
,”
J. Appl. Phys.
114
,
213501
(
2013
).
26.
C. R.
Morelock
,
L. C.
Gallington
, and
A. P.
Wilkinson
, “
Solid solubility, phase transitions, thermal expansion, and compressibility in Sc1−xAlxF3
,”
J. Solid State Chem.
222
,
96
102
(
2015
).
27.
C. R.
Morelock
,
L. C.
Gallington
, and
A. P.
Wilkinson
, “
Evolution of negative thermal expansion and phase transitions in Sc1−xTixF3
,”
Chem. Mater.
26
,
1936
1940
(
2014
).
28.
F.
Qin
,
J.
Chen
,
U.
Aydemir
,
A.
Sanson
,
L.
Wang
,
Z.
Pan
,
J.
Xu
,
C.
Sun
,
Y.
Ren
,
J.
Deng
,
R.
Yu
,
L.
Hu
,
G. J.
Snyder
, and
X.
Xing
, “
Isotropic zero thermal expansion and local vibrational dynamics in (Sc, Fe)F3
,”
Inorg. Chem.
56
,
10840
10843
(
2017
).
29.
L.
Hu
,
J.
Chen
,
L.
Fan
,
Y.
Ren
,
Y.
Rong
,
Z.
Pan
,
J.
Deng
,
R.
Yu
, and
X.
Xing
, “
Zero thermal expansion and ferromagnetism in cubic Sc1−xMxF3 (M = Ga, Fe) over a wide temperature range
,”
J. Am. Chem. Soc.
136
,
13566
13569
(
2014
).
30.
J.
Chen
,
Q.
Gao
,
A.
Sanson
,
X.
Jiang
,
Q.
Huang
,
A.
Carnera
,
C. G.
Rodriguez
,
L.
Olivi
,
L.
Wang
,
L.
Hu
,
K.
Lin
,
Y.
Ren
,
Z.
Lin
,
C.
Wang
,
L.
Gu
,
J.
Deng
,
J. P.
Attfield
, and
X.
Xing
, “
Tunable thermal expansion in framework materials through redox intercalation
,”
Nat. Commun.
8
,
14441
14447
(
2017
).
31.
S. J.
Baxter
,
K. V.
Loske
,
A. J.
Lloyd II
, and
A. P.
Wilkinson
, “
Controlling the phase behavior of low and negative thermal expansion ReO3-type fluorides using interstitial anions: Sc1−xZrxF3+x
,”
Inorg. Chem.
59
,
7188
7194
(
2020
).
32.
T.
Wang
,
J.
Xu
,
L.
Hu
,
W.
Wang
,
R.
Huang
,
F.
Han
,
Z.
Pan
,
J.
Deng
,
Y.
Ren
,
L.
Li
,
J.
Chen
, and
X.
Xing
, “
Tunable thermal expansion and magnetism in Zr-doped ScF3
,”
Appl. Phys. Lett.
109
,
181901
(
2016
).
33.
J. C.
Hancock
,
K. W.
Chapman
,
G. J.
Halder
,
C. R.
Morelock
,
B. S.
Kaplan
,
L. C.
Gallington
,
A.
Bongiorno
,
C.
Han
,
S.
Zhou
, and
A. P.
Wilkinson
, “
Large negative thermal expansion and anomalous behavior on compression in cubic ReO3-type AIIBIVF6: CaZrF6 and CaHfF6
,”
Chem. Mater.
27
,
3912
3918
(
2015
).
34.
B. R.
Hester
,
A. M.
Dos Santos
,
J. J.
Molaison
,
J. C.
Hancock
, and
A. P.
Wilkinson
, “
Synthesis of defect perovskites (He2−xx)(CaZr)F6 by inserting helium into the negative thermal expansion material CaZrF6
,”
J. Am. Chem. Soc.
139
,
13284
13287
(
2017
).
35.
A. J.
Lloyd
,
B. R.
Hester
,
S. J.
Baxter
,
S.
Ma
,
V. B.
Prakapenka
,
S. N.
Tkachev
,
C.
Park
, and
A. P.
Wilkinson
, “
Hybrid double perovskite containing helium: [He2][CaZr]F6
,”
Chem. Mater.
33
,
3132
3138
(
2021
).
36.
C. A.
Occhialini
,
S. U.
Handunkanda
,
E. B.
Curry
, and
J. N.
Hancock
, “
Classical, quantum, and thermodynamics of a lattice model exhibiting structural negative thermal expansion
,”
Phys. Rev. B
95
,
094106
(
2017
).
37.
T. A.
Bird
,
J.
Woodland-Scott
,
L.
Hu
,
M. T.
Wharmby
,
J.
Chen
,
A. L.
Goodwin
, and
M. S.
Senn
, “
Anharmonicity and scissoring modes in the negative thermal expansion materials ScF3 and CaZrF6
,”
Phys. Rev. B
101
,
064306
(
2020
).
38.
F.
Han
,
L.
Hu
,
Z.
Liu
,
Q.
Li
,
T.
Wang
,
Y.
Ren
,
J.
Deng
,
J.
Chen
, and
X.
Xing
, “
Local structure and controllable thermal expansion in the solid solution (Mn1−xNix)ZrF6
,”
Inorg. Chem. Front.
4
,
343
347
(
2017
).
39.
D.
Wendt
,
E.
Bozin
,
J.
Neuefeind
,
K.
Page
,
W.
Ku
,
L.
Wang
,
B.
Fultz
,
A. V.
Tkachenko
, and
I. A.
Zaliznyak
, “
Entropic elasticity and negative thermal expansion in a simple cubic crystal
,”
Sci. Adv.
5
,
eaay2748
(
2019
).
40.
L.
Wang
,
C.
Wang
,
Y.
Sun
,
S.
Deng
,
K.
Shi
,
H.
Lu
,
P.
Hu
, and
X.
Zhang
, “
First-principles study of Sc1−xTixF3 (x ≤ 0.375): Negative thermal expansion, phase transition, and compressibility
,”
J. Am. Ceram. Soc.
98
,
2852
2857
(
2015
).
41.
V.
Heine
,
P. R.
Welche
, and
M. T.
Dove
, “
Geometrical origin and theory of negative thermal expansion in framework structures
,”
J. Am. Ceram. Soc.
82
,
1793
1802
(
1999
).
42.
A. P.
Giddy
,
M. T.
Dove
,
G. S.
Pawley
, and
V.
Heine
, “
The determination of rigid-unit modes as potential soft modes for displacive phase transitions in framework crystal structures
,”
Acta Crystallogr., Sect. A
49
,
697
703
(
1993
).
43.
M. T.
Dove
and
H.
Fang
, “
Negative thermal expansion and associated anomalous physical properties: Review of the lattice dynamics theoretical foundation
,”
Rep. Prog. Phys.
79
,
066503
(
2016
).
44.
K. D.
Hammonds
,
M. T.
Dove
,
A. P.
Giddy
,
V.
Heine
, and
B.
Winkler
, “
Rigid-unit phonon modes and structural phase transitions in framework silicates
,”
Am. Mineral.
81
,
1057
1079
(
1996
).
45.
A. K.
Pryde
,
K. D.
Hammonds
,
M. T.
Dove
,
V.
Heine
,
J. D.
Gale
, and
M. C.
Warren
, “
Rigid unit modes and the negative thermal expansion in ZrW2O8
,”
Phase Transitions
61
,
141
153
(
1997
).
46.
M. T.
Dove
,
Z.
Wei
,
A. E.
Phillips
,
D. A.
Keen
, and
K.
Refson
, “
Which phonons contribute most to negative thermal expansion in ScF3?
,”
APL Mater.
11
,
041130
(
2023
).
47.
M. T.
Dove
,
J.
Du
,
Z.
Wei
,
D. A.
Keen
,
M. G.
Tucker
, and
A. E.
Phillips
, “
Quantitative understanding of negative thermal expansion in scandium trifluoride from neutron total scattering measurements
,”
Phys. Rev. B
102
,
094105
(
2020
).
48.
A.
Sanson
,
M.
Giarola
,
G.
Mariotto
,
L.
Hu
,
J.
Chen
, and
X.
Xing
, “
Lattice dynamics and anharmonicity of CaZrF6 from Raman spectroscopy and ab initio calculations
,”
Mater. Chem. Phys.
180
,
213
218
(
2016
).
49.
Y.
Oba
,
T.
Tadano
,
R.
Akashi
, and
S.
Tsuneyuki
, “
First-principles study of phonon anharmonicity and negative thermal expansion in ScF3
,”
Phys. Rev. Mater.
3
,
033601
(
2019
).
50.
S.
Baroni
,
P.
Giannozzi
, and
E.
Isaev
, “
Density-functional perturbation theory for quasi-harmonic calculations
,”
Rev. Mineral. Geochem.
71
,
39
57
(
2010
).
51.
C. W.
Li
,
X.
Tang
,
J. A.
Muñoz
,
J. B.
Keith
,
S. J.
Tracy
,
D. L.
Abernathy
, and
B.
Fultz
, “
Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3
,”
Phys. Rev. Lett.
107
,
195504
(
2011
).
52.
T.
Tadano
and
S.
Tsuneyuki
, “
Self-consistent phonon calculations of lattice dynamical properties in cubic SrTiO3 with first-principles anharmonic force constants
,”
Phys. Rev. B
92
,
054301
(
2015
).
53.
N. R.
Werthamer
, “
Self-consistent phonon formulation of anharmonic lattice dynamics
,”
Phys. Rev. B
1
,
572
(
1970
).
54.
V. V.
Goldman
,
G. K.
Horton
, and
M. L.
Klein
, “
An improved self-consistent phonon approximation
,”
Phys. Rev. Lett.
21
,
1527
(
1968
).
55.
F.
Zhou
,
W.
Nielson
,
Y.
Xia
, and
V.
Ozoliņš
, “
Compressive sensing lattice dynamics. I. General formalism
,”
Phys. Rev. B
100
,
184308
(
2019
).
56.
F.
Zhou
,
B.
Sadigh
,
D.
Åberg
,
Y.
Xia
, and
V.
Ozoliņš
, “
Compressive sensing lattice dynamics. II. Efficient phonon calculations and long-range interactions
,”
Phys. Rev. B
100
,
184309
(
2019
).
57.
P.
Lazar
,
T.
Bučko
, and
J.
Hafner
, “
Negative thermal expansion of ScF3: Insights from density-functional molecular dynamics in the isothermal-isobaric ensemble
,”
Phys. Rev. B
92
,
224302
(
2015
).
58.
D.
Bocharov
,
M.
Krack
,
Y.
Rafalskij
,
A.
Kuzmin
, and
J.
Purans
, “
Ab initio molecular dynamics simulations of negative thermal expansion in ScF3: The effect of the supercell size
,”
Comput. Mater. Sci.
171
,
109198
(
2020
).
59.
D.
Bocharov
,
Y.
Rafalskij
,
M.
Krack
,
M.
Putnina
, and
A.
Kuzmin
, “
Negative thermal expansion of ScF3: First principles vs empirical molecular dynamics
,”
IOP Conf. Ser.: Mater. Sci. Eng.
503
,
012001
(
2019
).
60.
M. K.
Gupta
,
B.
Singh
,
R.
Mittal
, and
S. L.
Chaplot
, “
Negative thermal expansion behavior in M ZrF6 (M = Ca, Mg, Sr): Ab initio lattice dynamical studies
,”
Phys. Rev. B
98
,
014301
(
2018
).
61.
N.
Wang
,
J.
Deng
,
J.
Chen
, and
X.
Xing
, “
Phonon spectrum attributes for the negative thermal expansion of MZrF6 (M = Ca, Mn-Ni, Zn)
,”
Inorg. Chem. Front.
6
,
1022
1028
(
2019
).
62.
L.
Fiedler
,
K.
Shah
,
M.
Bussmann
, and
A.
Cangi
, “
Deep dive into machine learning density functional theory for materials science and chemistry
,”
Phys. Rev. Mater.
6
,
040301
(
2022
).
63.
V. L.
Deringer
,
M. A.
Caro
, and
G.
Csányi
, “
Machine learning interatomic potentials as emerging tools for materials science
,”
Adv. Mater.
31
,
1902765
(
2019
).
64.
J.
Schmidt
,
M. R. G.
Marques
,
S.
Botti
, and
M. A. L.
Marques
, “
Recent advances and applications of machine learning in solid-state materials science
,”
npj Comput. Mater.
5
,
83
(
2019
).
65.
F.
Noé
,
A.
Tkatchenko
,
K. R.
Müller
, and
C.
Clementi
, “
Machine learning for molecular simulation
,”
Annu. Rev. Phys. Chem.
71
,
361
390
(
2020
).
66.
J.
Behler
, “
Perspective: Machine learning potentials for atomistic simulations
,”
J. Chem. Phys.
145
,
170901
(
2016
).
67.
P. O.
Dral
, “
Quantum chemistry in the age of machine learning
,”
J. Phys. Chem. Lett.
11
,
2336
2347
(
2020
).
68.
J.
Behler
,
R.
Martoňák
,
D.
Donadio
, and
M.
Parrinello
, “
Pressure-induced phase transitions in silicon studied by neural network-based metadynamics simulations
,”
Phys. Status Solidi B
245
,
2618
2629
(
2008
).
69.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
70.
H.
Eshet
,
R. Z.
Khaliullin
,
T. D.
Kühne
,
J.
Behler
, and
M.
Parrinello
, “
Ab initio quality neural-network potential for sodium
,”
Phys. Rev. B
81
,
184107
(
2010
).
71.
C.
Chen
,
Z.
Deng
,
R.
Tran
,
H.
Tang
,
I. H.
Chu
, and
S. P.
Ong
, “
Accurate force field for molybdenum by machine learning large materials data
,”
Phys. Rev. Mater.
1
,
043603
(
2017
).
72.
X.
Chen
,
L. F.
Wang
,
X. Y.
Gao
,
Y. F.
Zhao
,
D. Y.
Lin
,
W. D.
Chu
, and
H. F.
Song
, “
Machine learning enhanced empirical potentials for metals and alloys
,”
Comput. Phys. Commun.
269
,
108132
(
2021
).
73.
S.
Ma
and
Z. P.
Liu
, “
Machine learning potential era of zeolite simulation
,”
Chem. Sci.
13
,
5055
5068
(
2022
).
74.
O.
Tayfuroglu
,
A.
Kocak
, and
Y.
Zorlu
, “
A neural network potential for the IRMOF series and its application for thermal and mechanical behaviors
,”
Phys. Chem. Chem. Phys.
24
,
11882
11897
(
2022
).
75.
P.
Friederich
,
F.
Häse
,
J.
Proppe
, and
A.
Aspuru-Guzik
, “
Machine-learned potentials for next-generation matter simulations
,”
Nat. Mater.
20
,
750
761
(
2021
).
76.
Y.
Liu
,
T.
Zhao
,
W.
Ju
, and
S.
Shi
, “
Materials discovery and design using machine learning
,”
J. Materiomics
3
,
159
177
(
2017
).
77.
S.
Lin
,
Y.
Wang
,
Y.
Zhao
,
L. R.
Pericchi
,
A. J.
Hernández-Maldonado
, and
Z.
Chen
, “
Machine-learning-assisted screening of pure-silica zeolites for effective removal of linear siloxanes and derivatives
,”
J. Mater. Chem. A
8
,
3228
3237
(
2020
).
78.
C.
Altintas
,
O. F.
Altundal
,
S.
Keskin
, and
R.
Yildirim
, “
Machine learning meets with metal organic frameworks for gas storage and separation
,”
J. Chem. Inf. Model.
61
,
2131
2146
(
2021
).
79.
P.
Giannozzi
,
O.
Baseggio
,
P.
Bonfà
,
D.
Brunato
,
R.
Car
,
I.
Carnimeo
,
C.
Cavazzoni
,
S.
De Gironcoli
,
P.
Delugas
,
F.
Ferrari Ruffino
,
A.
Ferretti
,
N.
Marzari
,
I.
Timrov
,
A.
Urru
, and
S.
Baroni
, “
Quantum ESPRESSO toward the exascale
,”
J. Chem. Phys.
152
,
154105
(
2020
).
80.
A.
Hjorth Larsen
,
J.
Jørgen Mortensen
,
J.
Blomqvist
,
I. E.
Castelli
,
R.
Christensen
,
M.
Dułak
,
J.
Friis
,
M. N.
Groves
,
B.
Hammer
,
C.
Hargus
,
E. D.
Hermes
,
P. C.
Jennings
,
P.
Bjerre Jensen
,
J.
Kermode
,
J. R.
Kitchin
,
E.
Leonhard Kolsbjerg
,
J.
Kubal
,
K.
Kaasbjerg
,
S.
Lysgaard
,
J.
Bergmann Maronsson
,
T.
Maxson
,
T.
Olsen
,
L.
Pastewka
,
A.
Peterson
,
C.
Rostgaard
,
J.
Schiøtz
,
O.
Schütt
,
M.
Strange
,
K. S.
Thygesen
,
T.
Vegge
,
L.
Vilhelmsen
,
M.
Walter
,
Z.
Zeng
, and
K. W.
Jacobsen
, “
The atomic simulation environment—A Python library for working with atoms
,”
J. Phys.: Condens. Matter
29
,
273002
(
2017
).
81.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
82.
A.
Dal Corso
, “
Pseudopotentials periodic table: From H to Pu
,”
Comput. Mater. Sci.
95
,
337
350
(
2014
).
83.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
(
1981
).
84.
H.
Wang
,
L.
Zhang
,
J.
Han
, and
W.
E
, “
DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
,”
Comput. Phys. Commun.
228
,
178
184
(
2018
).
85.
L.
Zhang
,
J.
Han
,
H.
Wang
,
R.
Car
, and
W.
E
, “
Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics
,”
Phys. Rev. Lett.
120
,
143001
(
2018
).
86.
L.
Zhang
,
J.
Han
,
H.
Wang
,
W.
Saidi
,
R.
Car
, and
W.
E
, “
End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems
,” in
Advances in Neural Information Processing Systems
(
Curran Associates, Inc.
,
2018
), Vol.
31
, pp.
8024
8035
.
87.
T. A.
Young
,
T.
Johnston-Wood
,
V. L.
Deringer
, and
F.
Duarte
, “
A transferable active-learning strategy for reactive molecular force fields
,”
Chem. Sci.
12
,
10944
10955
(
2021
).
88.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
Dinola
, and
J. R.
Haak
, “
Molecular dynamics with coupling to an external bath
,”
J. Chem. Phys.
81
,
3684
(
1984
).
89.
G.
Bussi
,
T.
Zykova-Timan
, and
M.
Parrinello
, “
Isothermal-isobaric molecular dynamics using stochastic velocity rescaling
,”
J. Chem. Phys.
130
,
074101
(
2009
).
90.
G. J.
Martyna
,
D. J.
Tobias
, and
M. L.
Klein
, “
Constant pressure molecular dynamics algorithms
,”
J. Chem. Phys.
101
,
4177
(
1994
).
91.
M.
Ceriotti
,
J.
More
, and
D. E.
Manolopoulos
, “
i-PI: A Python interface for ab initio path integral molecular dynamics simulations
,”
Comput. Phys. Commun.
185
,
1019
1026
(
2014
).
92.
V.
Kapil
,
M.
Rossi
,
O.
Marsalek
,
R.
Petraglia
,
Y.
Litman
,
T.
Spura
,
B.
Cheng
,
A.
Cuzzocrea
,
R. H.
Meißner
,
D. M.
Wilkins
,
B. A.
Helfrecht
,
P.
Juda
,
S. P.
Bienvenue
,
W.
Fang
,
J.
Kessler
,
I.
Poltavsky
,
S.
Vandenbrande
,
J.
Wieme
,
C.
Corminboeuf
,
T. D.
Kühne
,
D. E.
Manolopoulos
,
T. E.
Markland
,
J. O.
Richardson
,
A.
Tkatchenko
,
G. A.
Tribello
,
V.
Van Speybroeck
, and
M.
Ceriotti
, “
i-PI 2.0: A universal force engine for advanced molecular simulations
,”
Comput. Phys. Commun.
236
,
214
223
(
2019
).
93.
C.
Wang
,
D.
Chang
,
J.
Wang
,
Q.
Gao
,
Y.
Zhang
,
C.
Niu
,
C.
Liu
, and
Y.
Jia
, “
Size and crystal symmetry breaking effects on negative thermal expansion in ScF3 nanostructures
,”
Phys. Chem. Chem. Phys.
23
,
24814
24822
(
2021
).
94.
W. J.
Kim
,
M.
Kim
,
E. K.
Lee
,
S.
Lebègue
, and
H.
Kim
, “
Failure of density functional dispersion correction in metallic systems and its possible solution using a modified many-body dispersion correction
,”
J. Phys. Chem. Lett.
7
,
3278
3283
(
2016
).
95.
A.
Tkatchenko
,
R. A.
Distasio
,
R.
Car
, and
M.
Scheffler
, “
Accurate and efficient method for many-body van der Waals interactions
,”
Phys. Rev. Lett.
108
,
236402
(
2012
).
96.
G. P.
Chen
,
V. K.
Voora
,
M. M.
Agee
,
S. G.
Balasubramani
, and
F.
Furche
, “
Random-phase approximation methods
,”
Annu. Rev. Phys. Chem.
68
,
421
445
(
2017
).
97.
C.-K.
Lee
,
C.
Lu
,
Y.
Yu
,
Q.
Sun
,
C.-Y.
Hsieh
,
S.
Zhang
,
Q.
Liu
, and
L.
Shi
, “
Transfer learning with graph neural networks for optoelectronic properties of conjugated oligomers
,”
J. Chem. Phys.
154
,
024906
(
2021
).
98.
K. N.
Trueblood
,
H. B.
Bürgi
,
H.
Burzlaff
,
J. D.
Dunitz
,
C. M.
Gramaccioli
,
H. H.
Schulz
,
U.
Shmueli
, and
S. C.
Abrahams
, “
Atomic dispacement parameter nomenclature. Report of a subcommittee on atomic displacement parameter nomenclature
,”
Acta Crystallogr., Sect. A
52
,
770
781
(
1996
).
99.
N.
Marzari
,
A.
Ferretti
, and
C.
Wolverton
, “
Electronic-structure methods for materials design
,”
Nat. Mater.
20
,
736
749
(
2021
).
100.
P.
Liu
,
C.
Verdi
,
F.
Karsai
, and
G.
Kresse
, “
Phase transitions of zirconia: Machine-learned force fields beyond density functional theory
,”
Phys. Rev. B
105
,
L060102
(
2022
).
101.
P.
Liu
,
J.
Wang
,
N.
Avargues
,
C.
Verdi
,
A.
Singraber
,
F.
Karsai
,
X.-Q.
Chen
, and
G.
Kresse
, “
Combining machine learning and many-body calculations: Coverage-dependent adsorption of CO on Rh(111)
,”
Phys. Rev. Lett.
130
,
078001
(
2023
).

Supplementary Material

You do not currently have access to this content.