Metal–water interfaces are central to understanding aqueous-phase heterogeneous catalytic processes. However, the explicit modeling of the interface is still challenging as it necessitates extensive sampling of the interfaces’ degrees of freedom. Herein, we use ab initio molecular dynamics (AIMD) simulations to study the adsorption of furfural, a platform biomass chemical on several catalytically relevant metal–water interfaces (Pt, Rh, Pd, Cu, and Au) at low coverages. We find that furfural adsorption is destabilized on all the metal–water interfaces compared to the metal–gas interfaces considered in this work. This destabilization is a result of the energetic penalty associated with the displacement of water molecules near the surface upon adsorption of furfural, further evidenced by a linear correlation between solvation energy and the change in surface water coverage. To predict solvation energies without the need for computationally expensive AIMD simulations, we demonstrate OH binding energy as a good descriptor to estimate the solvation energies of furfural. Using microkinetic modeling, we further explain the origin of the activity for furfural hydrogenation on intrinsically strong-binding metals under aqueous conditions, i.e., the endothermic solvation energies for furfural adsorption prevent surface poisoning. Our work sheds light on the development of active aqueous-phase catalytic systems via rationally tuning the solvation energies of reaction intermediates.

1.
J. K.
Nørskov
,
F.
Studt
,
F.
Abild-Pedersen
, and
T.
Bligaard
,
Fundamental Concepts in Heterogeneous Catalysis
(
Wiley
,
Hoboken, NJ
,
2015
).
2.
F.
Abild-Pedersen
,
J.
Greeley
,
F.
Studt
,
J.
Rossmeisl
,
T. R.
Munter
,
P. G.
Moses
,
E.
Skúlason
,
T.
Bligaard
, and
J. K.
Nørskov
, “
Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces
,”
Phys. Rev. Lett.
99
(
1
),
016105
(
2007
).
3.
E. M.
Fernández
,
P. G.
Moses
,
A.
Toftelund
,
H. A.
Hansen
,
J. I.
Martínez
,
F.
Abild-Pedersen
,
J.
Kleis
,
B.
Hinnemann
,
J.
Rossmeisl
,
T.
Bligaard
, and
J. K.
Nørskov
, “
Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces
,”
Angew. Chem., Int. Ed.
47
(
25
),
4683
4686
(
2008
).
4.
Z.-J.
Zhao
,
S.
Liu
,
S.
Zha
,
D.
Cheng
,
F.
Studt
,
G.
Henkelman
, and
J.
Gong
, “
Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors
,”
Nat. Rev. Mater.
4
(
12
),
792
804
(
2019
).
5.
S.
Vijay
,
G.
Kastlunger
,
K.
Chan
, and
J. K.
Nørskov
, “
Limits to scaling relations between adsorption energies?
,”
J. Chem. Phys.
156
(
23
),
231102
(
2022
).
6.
S.
Liu
,
C.
Yang
,
S.
Zha
,
D.
Sharapa
,
F.
Studt
,
Z.-J.
Zhao
, and
J.
Gong
, “
Moderate surface segregation promotes selective ethanol production in CO2 hydrogenation reaction over CoCu catalysts
,”
Angew. Chem.
134
(
2
),
e202109027
(
2022
).
7.
S.
Liu
,
Z.-J.
Zhao
,
C.
Yang
,
S.
Zha
,
K. M.
Neyman
,
F.
Studt
, and
J.
Gong
, “
Adsorption preference determines segregation direction: A shortcut to more realistic surface models of alloy catalysts
,”
ACS Catal.
9
(
6
),
5011
5018
(
2019
).
8.
L.
Lin
,
Y.
Ge
,
H.
Zhang
,
M.
Wang
,
D.
Xiao
, and
D.
Ma
, “
Heterogeneous catalysis in water
,”
JACS Au
1
(
11
),
1834
1848
(
2021
).
9.
G.
Gonella
,
E. H. G.
Backus
,
Y.
Nagata
,
D. J.
Bonthuis
,
P.
Loche
,
A.
Schlaich
,
R. R.
Netz
,
A.
Kühnle
,
I. T.
McCrum
,
M. T. M.
Koper
,
M.
Wolf
,
B.
Winter
,
G.
Meijer
,
R. K.
Campen
, and
M.
Bonn
, “
Water at charged interfaces
,”
Nat. Rev. Chem.
5
(
7
),
466
485
(
2021
).
10.
R.
Mariscal
,
P.
Maireles-Torres
,
M.
Ojeda
,
I.
Sádaba
, and
M.
López Granados
, “
Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels
,”
Energy Environ. Sci.
9
(
4
),
1144
1189
(
2016
).
11.
S.
Chen
,
R.
Wojcieszak
,
F.
Dumeignil
,
E.
Marceau
, and
S.
Royer
, “
How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural
,”
Chem. Rev.
118
(
22
),
11023
11117
(
2018
).
12.
A.
Mandalika
,
L.
Qin
,
T. K.
Sato
, and
T.
Runge
, “
Integrated biorefinery model based on production of furans using open-ended high yield processes
,”
Green Chem.
16
(
5
),
2480
2489
(
2014
).
13.
Y.
Wang
,
D.
Zhao
,
D.
Rodríguez-Padrón
, and
C.
Len
, “
Recent advances in catalytic hydrogenation of furfural
,”
Catalysts
9
(
10
),
796
(
2019
).
14.
S.
Liu
,
N.
Govindarajan
, and
K.
Chan
, “
Understanding activity trends in furfural hydrogenation on transition metal surfaces
,”
ACS Catal.
12
,
12902
12910
(
2022
).
15.
J. N.
Chheda
,
G. W.
Huber
, and
J. A.
Dumesic
, “
Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals
,”
Angew. Chem., Int. Ed.
46
(
38
),
7164
7183
(
2007
).
16.
J. C.
Serrano-Ruiz
,
R.
Luque
, and
A.
Sepúlveda-Escribano
, “
Transformations of biomass-derived platform molecules: From high added-value chemicals to fuels via aqueous-phase processing
,”
Chem. Soc. Rev.
40
(
11
),
5266
(
2011
).
17.
Y.
Deng
,
R.
Gao
,
L.
Lin
,
T.
Liu
,
X.-D.
Wen
,
S.
Wang
, and
D.
Ma
, “
Solvent tunes the selectivity of hydrogenation reaction over α-MoC catalyst
,”
J. Am. Chem. Soc.
140
(
43
),
14481
14489
(
2018
).
18.
M.
Chatterjee
,
A.
Chatterjee
,
T.
Ishizaka
, and
H.
Kawanami
, “
Defining Pt-compressed CO2 synergy for selectivity control of furfural hydrogenation
,”
RSC Adv.
8
(
36
),
20190
20201
(
2018
).
19.
G.
Gao
,
J.
Remón
,
Z.
Jiang
,
L.
Yao
, and
C.
Hu
, “
Selective hydrogenation of furfural to furfuryl alcohol in water under mild conditions over a hydrotalcite-derived Pt-based catalyst
,”
Appl. Catal., B
309
,
121260
(
2022
).
20.
J.
Yang
,
J.
Ma
,
Q.
Yuan
,
P.
Zhang
, and
Y.
Guan
, “
Selective hydrogenation of furfural on Ru/Al-MIL-53: A comparative study on the effect of aromatic and aliphatic organic linkers
,”
RSC Adv.
6
(
95
),
92299
92304
(
2016
).
21.
M. J.
Taylor
,
L.
Jiang
,
J.
Reichert
,
A. C.
Papageorgiou
,
S. K.
Beaumont
,
K.
Wilson
,
A. F.
Lee
,
J. V.
Barth
, and
G.
Kyriakou
, “
Catalytic hydrogenation and hydrodeoxygenation of furfural over Pt(111): A model system for the rational design and operation of practical biomass conversion catalysts
,”
J. Phys. Chem. C
121
(
15
),
8490
8497
(
2017
).
22.
G.
Li
,
B.
Wang
, and
D. E.
Resasco
, “
Water-mediated heterogeneously catalyzed reactions
,”
ACS Catal.
10
(
2
),
1294
1309
(
2020
).
23.
J.
Saavedra
,
H. A.
Doan
,
C. J.
Pursell
,
L. C.
Grabow
, and
B. D.
Chandler
, “
The critical role of water at the gold-titania interface in catalytic CO oxidation
,”
Science
345
(
6204
),
1599
1602
(
2014
).
24.
R.
Ma
,
X.-P.
Wu
,
T.
Tong
,
Z.-J.
Shao
,
Y.
Wang
,
X.
Liu
,
Q.
Xia
, and
X.-Q.
Gong
, “
The critical role of water in the ring opening of furfural alcohol to 1,2-pentanediol
,”
ACS Catal.
7
(
1
),
333
337
(
2017
).
25.
Z.
Zhao
,
R.
Bababrik
,
W.
Xue
,
Y.
Li
,
N. M.
Briggs
,
D.-T.
Nguyen
,
U.
Nguyen
,
S. P.
Crossley
,
S.
Wang
,
B.
Wang
, and
D. E.
Resasco
, “
Solvent-mediated charge separation drives alternative hydrogenation path of furanics in liquid water
,”
Nat. Catal.
2
(
5
),
431
436
(
2019
).
26.
P.
Nilges
and
U.
Schröder
, “
Electrochemistry for biofuel generation: Production of furans by electrocatalytic hydrogenation of furfurals
,”
Energy Environ. Sci.
6
(
10
),
2925
(
2013
).
27.
S.
Liu
,
Z.
Mukadam
,
S. B.
Scott
,
S.
Sarma
,
M.-M.
Titirici
,
K.
Chan
,
N.
Govindarajan
,
I. E. L.
Stephens
, and
G.
Kastlunger
, “
Unraveling the reaction mechanisms for furfural electroreduction on copper
,”
EES Catal.
1
,
539
(
2023
).
28.
J.
Akinola
,
I.
Barth
,
B. R.
Goldsmith
, and
N.
Singh
, “
Adsorption energies of oxygenated aromatics and organics on rhodium and platinum in aqueous phase
,”
ACS Catal.
10
(
9
),
4929
4941
(
2020
).
29.
J.
Akinola
and
N.
Singh
, “
Temperature dependence of aqueous-phase phenol adsorption on Pt and Rh
,”
J. Appl. Electrochem.
51
(
1
),
37
50
(
2021
).
30.
J.
O’M. Bockris
and
K.
Jeng
, “
In-situ studies of adsorption of organic compounds on platinum electrodes
,”
J. Electroanal. Chem.
330
(
1–2
),
541
581
(
1992
).
31.
N.
Singh
and
C. T.
Campbell
, “
A simple bond-additivity model explains large decreases in heats of adsorption in solvents versus gas phase: A case study with phenol on Pt(111) in water
,”
ACS Catal.
9
(
9
),
8116
8127
(
2019
).
32.
A.
Groß
and
S.
Sakong
, “
Ab initio simulations of water/metal interfaces
,”
Chem. Rev.
122
,
10746
(
2022
).
33.
A.
Hagopian
,
A.
Falcone
,
M.
Ben Yahia
, and
J.-S.
Filhol
, “
Ab initio modelling of interfacial electrochemical properties: Beyond implicit solvation limitations
,”
J. Phys.: Condens. Matter
33
(
30
),
304001
(
2021
).
34.
J.-B.
Le
,
A.
Chen
,
L.
Li
,
J.-F.
Xiong
,
J.
Lan
,
Y.-P.
Liu
,
M.
Iannuzzi
, and
J.
Cheng
, “
Modeling electrified Pt(111)-Had/water interfaces from ab initio molecular dynamics
,”
JACS Au
1
(
5
),
569
577
(
2021
).
35.
X.
Qin
,
T.
Vegge
, and
H. A.
Hansen
, “
Cation-coordinated inner-sphere CO2 electroreduction at Au–water interfaces
,”
J. Am. Chem. Soc.
145
(
3
),
1897
1905
(
2023
).
36.
M. C. O.
Monteiro
,
F.
Dattila
,
B.
Hagedoorn
,
R.
García-Muelas
,
N.
López
, and
M. T. M.
Koper
, “
Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution
,”
Nat. Catal.
4
,
654
662
(
2021
).
37.
T.
Ludwig
,
J. A.
Gauthier
,
K. S.
Brown
,
S.
Ringe
,
J. K.
Nørskov
, and
K.
Chan
, “
Solvent–adsorbate interactions and adsorbate-specific solvent structure in carbon dioxide reduction on a stepped Cu surface
,”
J. Phys. Chem. C
123
(
10
),
5999
6009
(
2019
).
38.
H. H.
Kristoffersen
,
K.
Chan
,
T.
Vegge
, and
H. A.
Hansen
, “
Energy–entropy competition in cation–hydroxyl interactions at the liquid water–Pt(111) interface
,”
Chem. Commun.
56
(
3
),
427
430
(
2020
).
39.
S.
Vijay
,
T. V.
Hogg
,
J.
Ehlers
,
H. H.
Kristoffersen
,
Y.
Katayama
,
Y.
Shao Horn
,
I.
Chorkendorff
,
K.
Chan
, and
B.
Seger
, “
Interaction of CO with gold in an electrochemical environment
,”
J. Phys. Chem. C
125
(
32
),
17684
17689
(
2021
).
40.
H. H.
Heenen
,
J. A.
Gauthier
,
H. H.
Kristoffersen
,
T.
Ludwig
, and
K.
Chan
, “
Solvation at metal/water interfaces: An ab initio molecular dynamics benchmark of common computational approaches
,”
J. Chem. Phys.
152
(
14
),
144703
(
2020
).
41.
Y.
Yoon
,
R.
Rousseau
,
R. S.
Weber
,
D.
Mei
, and
J. A.
Lercher
, “
First-principles study of phenol hydrogenation on Pt and Ni catalysts in aqueous phase
,”
J. Am. Chem. Soc.
136
(
29
),
10287
10298
(
2014
).
42.
M.
Zare
,
M. S.
Saleheen
,
N.
Singh
,
M. J.
Uline
,
M.
Faheem
, and
A.
Heyden
, “
Liquid-phase effects on adsorption processes in heterogeneous catalysis
,”
JACS Au
2
,
2119
(
2022
).
43.
Z.
Yao
,
G.-J.
Xia
,
W.
Cao
,
K.-H.
Zeng
, and
Y.-G.
Wang
, “
Mechanistic exploration of furfural hydrogenation on copper surface in aqueous phase by DFT and AIMD simulations
,”
J. Catal.
418
,
1
12
(
2023
).
44.
N.
Singh
,
U.
Sanyal
,
J. L.
Fulton
,
O. Y.
Gutiérrez
,
J. A.
Lercher
, and
C. T.
Campbell
, “
Quantifying adsorption of organic molecules on platinum in aqueous phase by hydrogen site blocking and in situ X-ray absorption spectroscopy
,”
ACS Catal.
9
(
8
),
6869
6881
(
2019
).
45.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
(
16
),
11169
11186
(
1996
).
46.
B.
Hammer
,
L. B.
Hansen
, and
J. K.
Nørskov
, “
Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals
,”
Phys. Rev. B
59
(
11
),
7413
7421
(
1999
).
47.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
(
15
),
154104
(
2010
).
48.
S.
Grimme
, “
Semiempirical GGA-type density functional constructed with a long-range dispersion correction
,”
J. Comput. Chem.
27
(
15
),
1787
1799
(
2006
).
49.
S.
Sakong
,
K.
Forster-Tonigold
, and
A.
Groß
, “
The structure of water at a Pt(111) electrode and the potential of zero charge studied from first principles
,”
J. Chem. Phys.
144
(
19
),
194701
(
2016
).
50.
H. H.
Kristoffersen
,
T.
Vegge
, and
H. A.
Hansen
, “
OH formation and H2 adsorption at the liquid water–Pt(111) interface
,”
Chem. Sci.
9
(
34
),
6912
6921
(
2018
).
51.
H. H.
Kristoffersen
,
J.-E.
Shea
, and
H.
Metiu
, “
Catechol and HCl adsorption on TiO2(110) in vacuum and at the water–TiO2 interface
,”
J. Phys. Chem. Lett.
6
(
12
),
2277
2281
(
2015
).
52.
L.
Ruiz Pestana
,
O.
Marsalek
,
T. E.
Markland
, and
T.
Head-Gordon
, “
The quest for accurate liquid water properties from first principles
,”
J. Phys. Chem. Lett.
9
(
17
),
5009
5016
(
2018
).
53.
S. K.
Natarajan
and
J.
Behler
, “
Neural network molecular dynamics simulations of solid–liquid interfaces: Water at low-index copper surfaces
,”
Phys. Chem. Chem. Phys.
18
(
41
),
28704
28725
(
2016
).
54.
B.
Cordero
,
V.
Gómez
,
A. E.
Platero-Prats
,
M.
Revés
,
J.
Echeverría
,
E.
Cremades
,
F.
Barragán
, and
S.
Alvarez
, “
Covalent radii revisited
,”
Dalton Trans.
21
,
2832
2838
(
2008
).
55.
P.
Gono
,
F.
Ambrosio
, and
A.
Pasquarello
, “
Effect of the solvent on the oxygen evolution reaction at the TiO2–water interface
,”
J. Phys. Chem. C
123
(
30
),
18467
18474
(
2019
).
56.
A.
Serva
,
M.
Salanne
,
M.
Havenith
, and
S.
Pezzotti
, “
Size dependence of hydrophobic hydration at electrified gold/water interfaces
,”
Proc. Natl. Acad. Sci. U. S. A.
118
(
15
),
e2023867118
(
2021
).
57.
D. T.
Limmer
,
A. P.
Willard
,
P.
Madden
, and
D.
Chandler
, “
Hydration of metal surfaces can be dynamically heterogeneous and hydrophobic
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
11
),
4200
4205
(
2013
).
58.
R.
Šivec
,
M.
Huš
,
B.
Likozar
, and
M.
Grilc
, “
Furfural hydrogenation over Cu, Ni, Pd, Pt, Re, Rh and Ru catalysts: Ab initio modelling of adsorption, desorption and reaction micro-kinetics
,”
Chem. Eng. J.
436
,
135070
(
2022
).
59.
S. H.
Pang
and
J. W.
Medlin
, “
Adsorption and reaction of furfural and furfuryl alcohol on Pd(111): Unique reaction pathways for multifunctional reagents
,”
ACS Catal.
1
(
10
),
1272
1283
(
2011
).
60.
D.
Shi
and
J. M.
Vohs
, “
Deoxygenation of biomass-derived oxygenates: Reaction of furfural on Zn-modified Pt(111)
,”
ACS Catal.
5
(
4
),
2177
2183
(
2015
).
61.
Y.
Shi
,
Y.
Zhu
,
Y.
Yang
,
Y.-W.
Li
, and
H.
Jiao
, “
Exploring furfural catalytic conversion on Cu(111) from computation
,”
ACS Catal.
5
(
7
),
4020
4032
(
2015
).
62.
S.
Wang
,
V.
Vorotnikov
, and
D. G.
Vlachos
, “
Coverage-induced conformational effects on activity and selectivity: Hydrogenation and decarbonylation of furfural on Pd(111)
,”
ACS Catal.
5
(
1
),
104
112
(
2015
).
63.
S.
Schnur
and
A.
Groß
, “
Properties of metal–water interfaces studied from first principles
,”
New J. Phys.
11
(
12
),
125003
(
2009
).
64.
J.
Le
,
A.
Cuesta
, and
J.
Cheng
, “
The structure of metal-water interface at the potential of zero charge from density functional theory-based molecular dynamics
,”
J. Electroanal. Chem.
819
,
87
94
(
2018
).
65.
J.-B.
Le
,
Q.-Y.
Fan
,
J.-Q.
Li
, and
J.
Cheng
, “
Molecular origin of negative component of Helmholtz capacitance at electrified Pt(111)/water interface
,”
Sci. Adv.
6
(
41
),
eabb1219
(
2020
).
66.
K.
Forster-Tonigold
and
A.
Groß
, “
Dispersion corrected RPBE studies of liquid water
,”
J. Chem. Phys.
141
(
6
),
064501
(
2014
).
67.
D. S.
Potts
,
D. T.
Bregante
,
J. S.
Adams
,
C.
Torres
, and
D. W.
Flaherty
, “
Influence of solvent structure and hydrogen bonding on catalysis at solid–liquid interfaces
,”
Chem. Soc. Rev.
50
,
12308
(
2021
).
68.
A. J.
Medford
,
J.
Wellendorff
,
A.
Vojvodic
,
F.
Studt
,
F.
Abild-Pedersen
,
K. W.
Jacobsen
,
T.
Bligaard
, and
J. K.
Nørskov
, “
Assessing the reliability of calculated catalytic ammonia synthesis rates
,”
Science
345
(
6193
),
197
200
(
2014
).
69.
S. R.
Kelly
,
H. H.
Heenen
,
N.
Govindarajan
,
K.
Chan
, and
J. K.
Nørskov
, “
OH binding energy as a universal descriptor of the potential of zero charge on transition metal surfaces
,”
J. Phys. Chem. C
126
,
5521
(
2022
).
70.
X.-Y.
Li
,
A.
Chen
,
X.-H.
Yang
,
J.-X.
Zhu
,
J.-B.
Le
, and
J.
Cheng
, “
Linear correlation between water adsorption energies and Volta potential differences for metal/water interfaces
,”
J. Phys. Chem. Lett.
12
(
30
),
7299
7304
(
2021
).
71.
A. E. G.
Mikkelsen
,
J.
Schiøtz
,
T.
Vegge
, and
K. W.
Jacobsen
, “
Is the water/Pt(111) interface ordered at room temperature?
,”
J. Chem. Phys.
155
(
22
),
224701
(
2021
).
72.
C.
Schran
,
F. L.
Thiemann
,
P.
Rowe
,
E. A.
Müller
,
O.
Marsalek
, and
A.
Michaelides
, “
Machine learning potentials for complex aqueous systems made simple
,”
Proc. Natl. Acad. Sci. U. S. A.
118
(
38
),
e2110077118
(
2021
).
73.
J.
Vandermause
,
Y.
Xie
,
J. S.
Lim
,
C. J.
Owen
, and
B.
Kozinsky
, “
Active learning of reactive Bayesian force fields applied to heterogeneous catalysis dynamics of H/Pt
,”
Nat. Commun.
13
(
1
),
5183
(
2022
).
74.
M. F.
Calegari Andrade
,
H.-Y.
Ko
,
L.
Zhang
,
R.
Car
, and
A.
Selloni
, “
Free energy of proton transfer at the water–TiO2 interface from ab initio deep potential molecular dynamics
,”
Chem. Sci.
11
(
9
),
2335
2341
(
2020
).
75.
Z.
An
and
J.
Li
, “
Recent advances in catalytic transfer hydrogenation of furfural to furfuryl alcohol over heterogeneous catalysts
,”
Green Chem.
24
,
1780
(
2022
).
76.
Y.
Kwon
,
K. J. P.
Schouten
,
J. C.
van der Waal
,
E.
de Jong
, and
M. T. M.
Koper
, “
Electrocatalytic conversion of furanic compounds
,”
ACS Catal.
6
(
10
),
6704
6717
(
2016
).

Supplementary Material

You do not currently have access to this content.