Evolution of nitrogen under shock compression up to 100 GPa is revisited via molecular dynamics simulations using a machine-learned interatomic potential. The model is shown to be capable of recovering the structure, dynamics, speciation, and kinetics in hot compressed liquid nitrogen predicted by first-principles molecular dynamics, as well as the measured principal shock Hugoniot and double shock experimental data, albeit without shock cooling. Our results indicate that a purely molecular dissociation description of nitrogen chemistry under shock compression provides an incomplete picture and that short oligomers form in non-negligible quantities. This suggests that classical models representing the shock dissociation of nitrogen as a transition to an atomic fluid need to be revised to include reversible polymerization effects.

1.
S.
Jiang
,
N.
Holtgrewe
,
S. S.
Lobanov
,
F.
Su
,
M. F.
Mahmood
,
R. S.
McWilliams
, and
A. F.
Goncharov
, “
Metallization and molecular dissociation of dense fluid nitrogen
,”
Nat. Commun.
9
,
2624
(
2018
).
2.
R.
Hudson
and
M.
Moore
, “
The N3 radical as a discriminator between ion-irradiated and UV-photolyzed astronomical ices
,”
Astrophys. J.
568
,
1095
(
2002
).
3.
Y.-J.
Kim
,
B.
Militzer
,
B.
Boates
,
S.
Bonev
,
P. M.
Celliers
,
G. W.
Collins
,
K. P.
Driver
,
D. E.
Fratanduono
,
S.
Hamel
,
R.
Jeanloz
et al, “
Evidence for dissociation and ionization in shock compressed nitrogen to 800 GPa
,”
Phys. Rev. Lett.
129
,
015701
(
2022
).
4.
B.
Boates
and
S. A.
Bonev
, “
First-order liquid–liquid phase transition in compressed nitrogen
,”
Phys. Rev. Lett.
102
,
015701
(
2009
).
5.
Y.
Li
,
X.
Feng
,
H.
Liu
,
J.
Hao
,
S.
Redfern
,
W.
Lei
,
D.
Liu
, and
Y.
Ma
, “
Route to high-energy density polymeric nitrogen t-N via He–N compounds
,”
Nat. Commun.
9
,
722
(
2018
).
6.
H. B.
Radousky
,
W. J.
Nellis
,
M.
Ross
,
D. C.
Hamilton
, and
A. C.
Mitchell
, “
Molecular dissociation and shock-induced cooling in fluid nitrogen
,”
Phys. Rev. Lett.
57
,
2419
(
1986
).
7.
W. J.
Nellis
,
H. B.
Radousky
,
D. C.
Hamilton
,
A. C.
Mitchell
,
N. C.
Holmes
,
K. B.
Christianson
, and
M.
van Thiel
, “
Equation-of-state, shock-temperature, and electrical-conductivity data of dense fluid nitrogen in the region of the dissociative phase transition
,”
J. Chem. Phys.
94
,
2244
(
1991
).
8.
M.
Sabeeh Akram
,
Z.-N.
Fan
,
M.-J.
Zhang
,
Q.-J.
Liu
, and
F.-S.
Liu
, “
Measuring the shock Hugoniot data of liquid nitrogen using a cryogenic system for shock compression
,”
J. Appl. Phys.
128
,
225901
(
2020
).
9.
G. L.
Schott
,
M. S.
Shaw
, and
J. D.
Johnson
, “
Shocked states from initially liquid oxygen–nitrogen systems
,”
J. Chem. Phys.
82
,
4264
(
1985
).
10.
M.
Ross
, “
The dissociation of dense liquid nitrogen
,”
J. Chem. Phys.
86
,
7110
(
1986
).
11.
M.
Ross
, “
Shock compression of simple liquids: Implications for deuterium
,”
High Pressure Res.
16
,
371
(
2000
).
12.
M. V.
Thiel
and
F.
Ree
, “
Accurate high-pressure and high-temperature effective pair potentials for the systems N2–N and O2–O
,”
J. Chem. Phys.
104
,
5019
(
1996
).
13.
D. C.
Hamilton
and
F. H.
Ree
, “
Chemical equilibrium calculations on the molecular-to-nonmolecular transition of shock compressed liquid nitrogen
,”
J. Chem. Phys.
90
,
4972
(
1989
).
14.
M.
Ross
and
F.
Rogers
, “
Polymerization, shock cooling, and the high-pressure phase diagram of nitrogen
,”
Phys. Rev. B
74
,
024103
(
2006
).
15.
J. D.
Kress
,
S.
Mazevet
,
L. A.
Collins
, and
W. W.
Wood
, “
Density-functional calculation of the Hugoniot of shocked liquid nitrogen
,”
Phys. Rev. B
63
,
024203
(
2001
).
16.
S.
Mazevet
,
J. D.
Johnson
,
J. D.
Kress
,
L. A.
Collins
, and
P.
Blottiau
, “
Density-functional calculation of multiple-shock Hugoniots of liquid nitrogen
,”
Phys. Rev. B
65
,
014204
(
2002
).
17.
Y.
Zuo
,
C.
Chen
,
X.
Li
,
Z.
Deng
,
Y.
Chen
,
J.
Behler
,
G.
Csányi
,
A. V.
Shapeev
,
A. P.
Thompson
,
M. A.
Wood
et al, “
Performance and cost assessment of machine learning interatomic potentials
,”
J. Phys. Chem. A
124
,
731
(
2020
).
18.
T.
Mueller
,
A.
Hernandez
, and
C.
Wang
, “
Machine learning for interatomic potential models
,”
J. Chem. Phys.
152
,
050902
(
2020
).
19.
B.
Mortazavi
,
X.
Zhuang
,
T.
Rabczuk
, and
A. V.
Shapeev
, “
Atomistic modeling of the mechanical properties: The rise of machine learning interatomic potentials
,”
Mater. Horiz.
10
,
1956
(
2023
).
20.
Y.
Mishin
, “
Machine-learning interatomic potentials for materials science
,”
Acta Mater.
214
,
116980
(
2021
).
21.
R. K.
Lindsey
,
L. E.
Fried
, and
N.
Goldman
, “
ChIMES: A force matched potential with explicit three-body interactions for molten carbon
,”
J. Chem. Theory Comput.
13
,
6222
(
2017
).
22.
R. K.
Lindsey
,
L. E.
Fried
, and
N.
Goldman
, “
Application of the ChIMES force field to nonreactive molecular systems: Water at ambient conditions
,”
J. Chem. Theory Comput.
15
,
436
(
2019
).
23.
R. K.
Lindsey
,
N.
Goldman
,
L. E.
Fried
, and
S.
Bastea
, “
Many-body reactive force field development for carbon condensation in C/O systems under extreme conditions
,”
J. Chem. Phys.
153
,
054103
(
2020
).
24.
R.
Lindsey
,
L. E.
Fried
,
N.
Goldman
, and
S.
Bastea
, “
Active learning for robust, high-complexity reactive atomistic simulations
,”
J. Chem. Phys.
153
,
134117
(
2020
).
25.
C. H.
Pham
,
R. K.
Lindsey
,
L. E.
Fried
, and
N.
Goldman
, “
Calculation of the detonation state of HN3 with quantum accuracy
,”
J. Chem. Phys.
153
,
224102
(
2020
).
26.
N.
Goldman
,
B.
Aradi
,
R. K.
Lindsey
, and
L. E.
Fried
, “
Development of a multicenter density functional tight binding model for plutonium surface hydriding
,”
J. Chem. Theory Comput.
14
,
2652
(
2018
).
27.
R. K.
Lindsey
,
S.
Bastea
,
N.
Goldman
, and
L. E.
Fried
, “
Investigating 3, 4-bis (3-nitrofurazan-4-yl) furoxan detonation with a rapidly tuned density functional tight binding model
,”
J. Chem. Phys.
154
,
164115
(
2021
).
28.
N.
Goldman
,
K. E.
Kweon
,
B.
Sadigh
,
T. W.
Heo
,
R. K.
Lindsey
,
C. H.
Pham
,
L. E.
Fried
,
B.
Aradi
,
K.
Holliday
,
J. R.
Jeffries
, and
B. C.
Wood
, “
Semi-automated creation of density functional tight binding models through leveraging Chebyshev polynomial-based force fields
,”
J. Chem. Theory Comput.
17
,
4435
(
2021
).
29.
R. K.
Lindsey
,
C.
Huy Pham
,
N.
Goldman
,
S.
Bastea
, and
L. E.
Fried
, “
Machine-learning a solution for reactive atomistic simulations of energetic materials
,”
Propellants, Explos., Pyrotech.
47
,
e202200001
(
2022
).
30.
R. K.
Lindsey
,
N.
Goldman
,
L. E.
Fried
, and
S.
Bastea
, “
Chemistry-mediated Ostwald ripening in carbon-rich C/O systems at extreme conditions
,”
Nat. Commun.
13
,
1424
(
2022
).
31.
M. R.
Armstrong
,
R. K.
Lindsey
,
N.
Goldman
,
M. H.
Nielsen
,
E.
Stavrou
,
L. E.
Fried
,
J. M.
Zaug
, and
S.
Bastea
, “
Ultrafast shock synthesis of nanocarbon from a liquid precursor
,”
Nat. Commun.
11
,
353
(
2020
).
32.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
(
1965
).
33.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
(
1993
).
34.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
,”
Phys. Rev. B
49
,
14251
(
1994
).
35.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
(
1996
).
36.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
37.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
38.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]
,”
Phys. Rev. Lett.
78
,
1396
(
1997
).
39.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1994
).
40.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
(
1999
).
41.
S.
Grimme
, “
Semiempirical GGA-type density functional constructed with a long-range dispersion correction
,”
J. Comput. Chem.
27
,
1787
(
2006
).
42.
C. J.
Mundy
,
A.
Curioni
,
N.
Goldman
,
I.-F.
Will Kuo
,
E. J.
Reed
,
L. E.
Fried
, and
M.
Ianuzzi
, “
Ultrafast transformation of graphite to diamond: An ab initio study of graphite under shock compression
,”
J. Chem. Phys.
128
,
184701
(
2008
).
43.
See https://github.com/rk-lindsey/chimes_lsq for more information about the ChIMES LSQ code,
2022
.
44.
See https://github.com/rk-lindsey/al_driver for more information about the automated ChIMES Active Learning Driver,
2022
.
45.
W. J.
Nellis
and
A. C.
Mitchell
, “
Shock compression of liquid argon, nitrogen, and oxygen to 90 GPa (900 kbar)
,”
J. Chem. Phys.
73
,
6137
(
1980
).
46.
E. J.
Reed
,
L. E.
Fried
, and
J.
Joannopoulos
, “
A method for tractable dynamical studies of single and double shock compression
,”
Phys. Rev. Lett.
90
,
235503
(
2003
).
47.
E.
Reed
,
L.
Fried
,
M.
Manaa
, and
J.
Joannopoulos
,
A Multi-Scale Approach to Molecular Dynamics Simulations of Shockwaves
(
Elsevier
,
New York
,
2005
), Chap. 10, pp.
297
326
.
48.
E. J.
Reed
,
L. E.
Fried
,
W. D.
Henshaw
, and
C. M.
Tarver
, “
Analysis of simulation technique for steady shock waves in materials with analytical equations of state
,”
Phys. Rev. E
74
,
056706
(
2006
).
49.
E. J.
Reed
,
A.
Maiti
, and
L. E.
Fried
, “
Anomalous sound propagation and slow kinetics in dynamically compressed amorphous carbon
,”
Phys. Rev. E
81
,
016607
(
2010
).
50.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Phys. Chem. C
117
,
1
(
1995
).
51.
See https://github.com/rk-lindsey/chimes_calculator for more information about the ChIMES calculator library,
2020
.
52.
D. A.
Brantley
,
R. S.
Crum
, and
M. C.
Akin
, “
Comparing temperature convergence of shocked thin films of tin and iron to a bulk temperature source
,”
J. Appl. Phys.
129
,
015903
(
2021
).
53.
W. J.
Nellis
,
N. C.
Holmes
,
A. C.
Mitchell
, and
M.
van Thiel
, “
Phase transition in fluid nitrogen at high densities and temperatures
,”
Phys. Rev. Lett.
53
,
1661
(
1984
).
54.
J.
Johnson
, “
Bound and estimate for the maximum compression of single shocks
,”
Phys. Rev. E
59
,
3727
(
1999
).
55.
J.
Johnson
, “
Three points concerning extreme compressions in shocked deuterium
,”
High Pressure Res.
16
,
305
(
2000
).
56.
M. E.
Cates
and
S. J.
Candau
, “
Statics and dynamics of worm-like surfactant micelles
,”
J. Phys.: Condens. Matter
2
,
6869
(
1990
).

Supplementary Material

You do not currently have access to this content.