A pulse-shaping technique in the mid-infrared spectral range based on pulses with a super-Gaussian temporal profile is considered for laser control. We show a realistic and efficient path to the population of a dark rovibrational state in acetylene (C2H2). The laser-induced dynamics in C2H2 are simulated using fully experimental structural parameters. Indeed, the rotation–vibration energy structure, including anharmonicities, is defined by the global spectroscopic Hamiltonian for the ground electronic state of C2H2 built from the extensive high-resolution spectroscopy studies on the molecule, transition dipole moments from intensities, and the effects of the (inelastic) collisions that are parameterized from line broadenings using the relaxation matrix [A. Aerts, J. Vander Auwera, and N. Vaeck, J. Chem. Phys. 154, 144308 (2021)]. The approach, based on an effective Hamiltonian, outperforms today’s ab initio computations both in terms of accuracy and computational cost for this class of molecules. With such accuracy, the Hamiltonian permits studying the inner mechanism of theoretical pulse shaping [A. Aerts et al., J. Chem. Phys. 156, 084302 (2022)] for laser quantum control. Here, the generated control pulse presents a number of interferences that take advantage of the control mechanism to populate the dark state. An experimental setup is proposed for in-laboratory investigation.

1.
J. L.
Herek
,
W.
Wohlleben
,
R. J.
Cogdell
,
D.
Zeidler
, and
M.
Motzkus
,
Nature
417
,
533
(
2002
).
2.
V. I.
Prokhorenko
,
A. M.
Nagy
,
S. A.
Waschuk
,
L. S.
Brown
,
R. R.
Birge
, and
R. J. D.
Miller
,
Science
313
,
1257
(
2006
).
3.
G.
Vogt
,
G.
Krampert
,
P.
Niklaus
,
P.
Nuernberger
, and
G.
Gerber
,
Phys. Rev. Lett.
94
,
068305
(
2005
).
4.
D.
Keefer
and
S.
Mukamel
,
Phys. Rev. Lett.
126
,
163202
(
2021
).
5.
S.
van Frank
,
M.
Bonneau
,
J.
Schmiedmayer
,
S.
Hild
,
C.
Gross
,
M.
Cheneau
,
I.
Bloch
,
T.
Pichler
,
A.
Negretti
,
T.
Calarco
, and
S.
Montangero
,
Sci. Rep.
6
,
34187
(
2016
).
6.
S.-H.
Shim
and
M. T.
Zanni
,
Phys. Chem. Chem. Phys.
11
,
748
(
2009
).
7.
S.-H.
Shim
,
D. B.
Strasfeld
,
Y. L.
Ling
, and
M. T.
Zanni
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
14197
(
2007
).
8.
A.
Gelzinis
,
R.
Augulis
,
V.
Butkus
,
B.
Robert
, and
L.
Valkunas
,
Biochim. Biophys. Acta, Bioenerg.
1860
,
271
(
2019
).
9.
R.
Fritzsch
,
S.
Hume
,
L.
Minnes
,
M. J.
Baker
,
G. A.
Burley
, and
N. T.
Hunt
,
Analyst
145
,
2014
(
2020
).
10.
T.
Feurer
,
J. C.
Vaughan
, and
K. A.
Nelson
,
Science
299
,
374
(
2003
).
11.
S.
Zahedpour
,
J.
Wahlstrand
, and
H.
Milchberg
,
Phys. Rev. Lett.
112
,
143601
(
2014
).
12.
M.
Spanner
,
E.
Shapiro
, and
M.
Ivanov
,
Phys. Rev. Lett.
92
,
093001
(
2004
).
13.
T.
Grinev
and
P.
Brumer
,
J. Chem. Phys.
140
,
124307
(
2014
).
14.
J.
Voll
and
R.
de Vivie-Riedle
,
New J. Phys.
11
,
105036
(
2009
).
15.
L. E.
de Araujo
,
Phys. Rev. A
77
,
033419
(
2008
).
16.
A.
Gogyan
,
S.
Guerin
, and
Y.
Malakyan
,
Phys. Rev. A
81
,
033401
(
2010
).
17.
A.
Devolder
,
M.
Desouter-Lecomte
,
O.
Atabek
,
E.
Luc-Koenig
, and
O.
Dulieu
,
Phys. Rev. A
103
,
033301
(
2021
).
19.
B. J.
Orr
,
Int. Rev. Phys. Chem.
25
,
655
(
2006
).
20.
K.
Prozument
,
R. G.
Shaver
,
M. A.
Ciuba
,
J. S.
Muenter
,
G. B.
Park
,
J. F.
Stanton
,
H.
Guo
,
B. M.
Wong
,
D. S.
Perry
, and
R. W.
Field
,
Faraday Discuss.
163
,
33
(
2013
).
21.
M. E.
Kellman
and
G.
Chen
,
J. Chem. Phys.
95
,
8671
(
1991
).
22.
J. P.
Rose
and
M. E.
Kellman
,
J. Chem. Phys.
105
,
10743
(
1996
).
23.
V.
Tyng
and
M. E.
Kellman
,
J. Phys. Chem. A
114
,
9825
(
2010
).
24.
D. J.
Nesbitt
and
R. W.
Field
,
J. Phys. Chem.
100
,
12735
(
1996
).
25.
M. P.
Jacobson
and
R. W.
Field
,
J. Phys. Chem. A
104
,
3073
(
2000
).
26.
J. H.
Baraban
,
P. B.
Changala
,
G. C.
Mellau
,
J. F.
Stanton
,
A. J.
Merer
, and
R. W.
Field
,
Science
350
,
1338
(
2015
).
27.
F. F.
Crim
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
12654
(
2008
).
28.
B.
Amyay
,
A.
Fayt
,
M.
Herman
, and
J.
Vander Auwera
,
J. Phys. Chem. Ref. Data
45
,
023103
(
2016
).
29.
D. S.
Perry
,
A.
Miller
,
B.
Amyay
,
A.
Fayt
, and
M.
Herman
,
Mol. Phys.
108
,
1115
(
2010
).
30.
D. S.
Perry
,
J.
Martens
,
B.
Amyay
, and
M.
Herman
,
Mol. Phys.
110
,
2687
(
2012
).
31.
A.
Aerts
,
P.
Kockaert
,
S.-P.
Gorza
,
A.
Brown
,
J.
Vander Auwera
, and
N.
Vaeck
,
J. Chem. Phys.
156
,
084302
(
2022
).
32.
A.
Aerts
,
J.
Vander Auwera
, and
N.
Vaeck
,
J. Chem. Phys.
154
,
144308
(
2021
).
33.
L.
Santos
,
M.
Herman
,
M.
Desouter-Lecomte
, and
N.
Vaeck
,
Mol. Phys.
116
,
2213
(
2018
).
34.
L.
Santos
,
N.
Iacobellis
,
M.
Herman
,
D.
Perry
,
M.
Desouter-Lecomte
, and
N.
Vaeck
,
Mol. Phys.
113
,
4000
(
2015
).
35.
M.
Harmony
,
Introduction to Molecular Energies and Spectra
(
Holt, Rinehart and Winston
,
NY
,
1971
).
37.
M.
Herman
and
J.
Liévin
,
J. Chem. Educ.
59
,
17
(
1982
).
38.
M.
Herman
, in
Handbook of High-Resolution Spectroscopy
, edited by
M.
Quack
and
F.
Merkt
(
John Wiley & Sons, Ltd.
,
Chichester
,
2011
), pp.
1993
2025
.
39.
H.-R.
Dübal
and
M.
Quack
,
Mol. Phys.
53
,
257
(
1984
).
40.
M.
Herman
and
D. S.
Perry
,
Phys. Chem. Chem. Phys.
15
,
9970
(
2013
).
41.
D. S.
Perry
,
G.
Bethardy
,
M. J.
Davis
, and
J.
Go
,
Faraday Discuss.
102
,
215
(
1995
).
42.
I. E.
Gordon
,
L. S.
Rothman
,
R. J.
Hargreaves
,
R.
Hashemi
,
E. V.
Karlovets
,
F. M.
Skinner
,
E. K.
Conway
,
C.
Hill
,
R. V.
Kochanov
,
Y.
Tan
et al,
J. Quant. Spectrosc. Radiat. Transfer
277
,
107949
(
2022
).
43.
L.
Gomez
,
D.
Jacquemart
,
N.
Lacome
, and
J.-Y.
Mandin
,
J. Quant. Spectrosc. Radiat. Transfer
110
,
2102
(
2009
).
44.
F. F.
Crim
,
Acc. Chem. Res.
32
,
877
(
1999
).
45.
G.
Lindblad
,
Commun. Math. Phys.
48
,
119
(
1976
).
46.
P.
Kumar
,
P.
Kumar
, and
A. K.
Sarma
,
Phys. Rev. A
89
,
033422
(
2014
).
47.
J.-S.
Liu
,
Q.-Y.
Cheng
,
D.-G.
Yue
,
X.-C.
Zhou
, and
Q.-T.
Meng
,
Laser Phys.
28
,
126002
(
2018
).
48.
A.
Monmayrant
,
S.
Weber
, and
B.
Chatel
,
J. Phys. B: At., Mol. Opt. Phys.
43
,
103001
(
2010
).
49.
M.
Lapert
,
R.
Tehini
,
G.
Turinici
, and
D.
Sugny
,
Phys. Rev. A
79
,
063411
(
2009
).
50.
N.
Khaneja
,
T.
Reiss
,
C.
Kehlet
,
T.
Schulte-Herbrüggen
, and
S. J.
Glaser
,
J. Magn. Reson.
172
,
296
(
2005
).
51.
S.
Machnes
,
E.
Assémat
,
D.
Tannor
, and
F. K.
Wilhelm
,
Phys. Rev. Lett.
120
,
150401
(
2018
).
52.
H.
Rabitz
,
M.
Hsieh
, and
C.
Rosenthal
,
Science
303
,
1998
(
2004
).
53.
D. V.
Zhdanov
and
T.
Seideman
,
Phys. Rev. A
92
,
052109
(
2015
).
54.
M.
Larocca
,
E.
Calzetta
, and
D. A.
Wisniacki
,
Phys. Rev. A
101
,
023410
(
2020
).
55.
B. O.
Volkov
,
O. V.
Morzhin
, and
A. N.
Pechen
,
J. Phys. A: Math. Theor.
54
,
215303
(
2021
).
56.
M.
Hemmer
,
G.
Cirmi
,
K.
Ravi
,
F.
Reichert
,
F.
Ahr
,
L.
Zapata
,
O.
Mücke
,
A.-L.
Calendron
,
H.
Çankaya
,
D.
Schimpf
et al,
Opt. Express
26
,
12536
(
2018
).
57.
D.
Schimpf
,
H.
Olgun
,
A.
Kalaydzhyan
,
Y.
Hua
,
N.
Matlis
, and
F.
Kärtner
,
Opt. Express
27
,
11037
(
2019
).
58.
H. T.
Olgun
,
W.
Tian
,
G.
Cirmi
,
K.
Ravi
,
C.
Rentschler
,
H.
Çankaya
,
M.
Pergament
,
M.
Hemmer
,
Y.
Hua
,
D. N.
Schimpf
,
N. H.
Matlis
, and
F. X.
Kärtner
,
Opt. Lett.
47
,
2374
(
2022
).
59.
A.
Ventura
,
J. G.
Hayashi
,
J.
Cimek
,
G.
Jasion
,
P.
Janicek
,
F. B.
Slimen
,
N.
White
,
Q.
Fu
,
L.
Xu
,
H.
Sakr
et al,
Opt. Express
28
,
16542
(
2020
).
60.
J.
Carcreff
,
F.
Cheviré
,
E.
Galdo
,
R.
Lebullenger
,
A.
Gautier
,
J. L.
Adam
,
D. L.
Coq
,
L.
Brilland
,
R.
Chahal
,
G.
Renversez
, and
J.
Troles
,
Opt. Mater. Express
11
,
198
(
2021
).
61.
F.
Raoult
,
A. C. L.
Boscheron
,
D.
Husson
,
C.
Sauteret
,
A.
Modena
,
V.
Malka
,
F.
Dorchies
, and
A.
Migus
,
Opt. Lett.
23
,
1117
(
1998
).
62.
R.
Lemons
,
N.
Neveu
,
J.
Duris
,
A.
Marinelli
,
C.
Durfee
, and
S.
Carbajo
,
Phys. Rev. Accel. Beams
25
,
013401
(
2022
).
63.
S.
Bisson
,
T.
Kulp
,
O.
Levi
,
J.
Harris
, and
M.
Fejer
,
Appl. Phys. B
85
,
199
(
2006
).
64.
O.
Novák
,
P. R.
Krogen
,
T.
Kroh
,
T.
Mocek
,
F. X.
Kärtner
, and
K.-H.
Hong
,
Opt. Lett.
43
,
1335
(
2018
).
You do not currently have access to this content.