We have developed a reduced-cost algebraic diagrammatic construction (ADC) method based on state-specific frozen natural orbital and natural auxiliary functions. The newly developed method has been benchmarked on the GW100 test set for the ionization problem. The use of state-specific natural orbitals drastically reduces the size of the virtual space with a systematically controllable accuracy and offers a significant speedup over the standard ionization potential (IP)-ADC(3) method. The accuracy of the method can be controlled by two thresholds and nearly a black box to use. The inclusion of the perturbative correction significantly improves the accuracy of the calculated IP values, and the efficiency of the method has been demonstrated by calculating the IP of a molecule with 60 atoms and more than 2216 basis functions.

1. .
D. J.
Rowe
, “
Equations-of-motion method and the extended shell model
,”
Rev. Mod. Phys.
40
(
1
),
153
166
(
1968
).
2. .
M.
Nooijen
and
J. G.
Snijders
, “
Coupled cluster approach to the single-particle Green’s function
,”
Int. J. Quantum Chem.
44
(
S26
),
55
83
(
1992
).
3. .
M.
Nooijen
and
R. J.
Bartlett
, “
Equation of motion coupled cluster method for electron attachment
,”
J. Chem. Phys.
102
(
9
),
3629
3647
(
1995
).
4. .
J. F.
Stanton
and
R. J.
Bartlett
, “
The equation of motion coupled‐cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties
,”
J. Chem. Phys.
98
(
9
),
7029
7039
(
1993
).
5. .
A. I.
Krylov
, “
Equation-of-motion coupled-cluster methods for open-shell and electronically excited species: The Hitchhiker’s guide to Fock space
,”
Annu. Rev. Phys. Chem.
59
(
1
),
433
462
(
2008
).
6. .
W.
von Niessen
,
J.
Schirmer
, and
L. S.
Cederbaum
, “
Computational methods for the one-particle Green’s function
,”
Comput. Phys. Rep.
1
(
2
),
57
125
(
1984
).
7. .
A. L.
Dempwolff
,
M.
Schneider
,
M.
Hodecker
, and
A.
Dreuw
, “
Efficient implementation of the non-Dyson third-order algebraic diagrammatic construction approximation for the electron propagator for closed- and open-shell molecules
,”
J. Chem. Phys.
150
(
6
),
064108
(
2019
).
8. .
A.
Dreuw
and
M.
Wormit
, “
The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
5
(
1
),
82
95
(
2015
).
9. .
J.
Schirmer
, “
Beyond the random-phase approximation: A new approximation scheme for the polarization propagator
,”
Phys. Rev. A
26
(
5
),
2395
2416
(
1982
).
10. .
J.
Schirmer
, “
Closed-form intermediate representations of many-body propagators and resolvent matrices
,”
Phys. Rev. A
43
(
9
),
4647
4659
(
1991
).
11. .
F.
Mertins
and
J.
Schirmer
, “
Algebraic propagator approaches and intermediate-state representations. I. The biorthogonal and unitary coupled-cluster methods
,”
Phys. Rev. A
53
(
4
),
2140
2152
(
1996
).
12. .
J.
Schirmer
and
A. B.
Trofimov
, “
Intermediate state representation approach to physical properties of electronically excited molecules
,”
J. Chem. Phys.
120
(
24
),
11449
11464
(
2004
).
13. .
D.
Mukherjee
and
W.
Kutzelnigg
, in
Many-body Methods in Quantum Chemistry
, edited by
U.
Kaldor
(
Springer
,
Berlin, Heidelberg
,
1989
), pp.
257
274
.
14. .
S.
Banerjee
and
A. Yu.
Sokolov
, “
Non-dyson algebraic diagrammatic construction theory for charged excitations in solids
,”
J. Chem. Theory Comput.
18
(
9
),
5337
5348
(
2022
).
15. .
S.
Banerjee
and
A. Yu.
Sokolov
, “
Efficient implementation of the single-reference algebraic diagrammatic construction theory for charged excitations: Applications to the TEMPO radical and DNA base pairs
,”
J. Chem. Phys.
154
(
7
),
074105
(
2021
).
16. .
J.
Schirmer
,
L. S.
Cederbaum
, and
O.
Walter
, “
New approach to the one-particle Green’s function for finite Fermi systems
,”
Phys. Rev. A
28
(
3
),
1237
1259
(
1983
).
17. .
G.
Angonoa
,
O.
Walter
, and
J.
Schirmer
, “
Theoretical K‐shell ionization spectra of N2 and CO by a fourth‐order Green’s function method
,”
J. Chem. Phys.
87
(
12
),
6789
6801
(
1987
).
18. .
J.
Schirmer
,
A. B.
Trofimov
, and
G.
Stelter
, “
A non-Dyson third-order approximation scheme for the electron propagator
,”
J. Chem. Phys.
109
(
12
),
4734
4744
(
1998
).
19. .
A. B.
Trofimov
and
J.
Schirmer
, “
Molecular ionization energies and ground- and ionic-state properties using a non-Dyson electron propagator approach
,”
J. Chem. Phys.
123
(
14
),
144115
(
2005
).
20. .
S.
Banerjee
and
A. Yu.
Sokolov
, “
Third-order algebraic diagrammatic construction theory for electron attachment and ionization energies: Conventional and Green’s function implementation
,”
J. Chem. Phys.
151
(
22
),
224112
(
2019
).
21. .
A. L.
Dempwolff
,
A. C.
Paul
,
A. M.
Belogolova
,
A. B.
Trofimov
, and
A.
Dreuw
, “
Intermediate state representation approach to physical properties of molecular electron-detached states. I. Theory and implementation
,”
J. Chem. Phys.
152
(
2
),
024113
(
2020
).
22. .
J.
Leitner
,
A. L.
Dempwolff
, and
A.
Dreuw
, “
The fourth-order algebraic diagrammatic construction scheme for the polarization propagator
,”
J. Chem. Phys.
157
(
18
),
184101
(
2022
).
23. .
D.
Mester
and
M.
Kállay
, “
Accurate spectral properties within double-hybrid density functional theory: A spin-scaled range-separated second-order algebraic-diagrammatic construction-based approach
,”
J. Chem. Theory Comput.
18
(
2
),
865
882
(
2022
).
24. .
A. B.
Trofimov
,
I. L.
Krivdina
,
J.
Weller
, and
J.
Schirmer
, “
Algebraic-diagrammatic construction propagator approach to molecular response properties
,”
Chem. Phys.
329
(
1–3
),
1
10
(
2006
).
25. .
S.
Knippenberg
,
D. R.
Rehn
,
M.
Wormit
,
J. H.
Starcke
,
I. L.
Rusakova
,
A. B.
Trofimov
, and
A.
Dreuw
, “
Calculations of nonlinear response properties using the intermediate state representation and the algebraic-diagrammatic construction polarization propagator approach: Two-photon absorption spectra
,”
J. Chem. Phys.
136
(
6
),
064107
(
2012
).
26. .
M.
Wormit
,
D. R.
Rehn
,
P. H. P.
Harbach
,
J.
Wenzel
,
C. M.
Krauter
,
E.
Epifanovsky
, and
A.
Dreuw
, “
Investigating excited electronic states using the algebraic diagrammatic construction (ADC) approach of the polarisation propagator
,”
Mol. Phys.
112
(
5–6
),
774
784
(
2014
).
27. .
F.
Plasser
,
R.
Crespo-Otero
,
M.
Pederzoli
,
J.
Pittner
,
H.
Lischka
, and
M.
Barbatti
, “
Surface hopping dynamics with correlated single-reference methods: 9H-adenine as a case study
,”
J. Chem. Theory Comput.
10
(
4
),
1395
1405
(
2014
).
28. .
B.
Lunkenheimer
and
A.
Köhn
, “
Solvent effects on electronically excited states using the conductor-like screening model and the second-order correlated method ADC(2)
,”
J. Chem. Theory Comput.
9
(
2
),
977
994
(
2013
).
29. .
J.-M.
Mewes
,
J. M.
Herbert
, and
A.
Dreuw
, “
On the accuracy of the general, state-specific polarizable-continuum model for the description of correlated ground- and excited states in solution
,”
Phys. Chem. Chem. Phys.
19
(
2
),
1644
1654
(
2017
).
30. .
S.
Prager
,
A.
Zech
,
T. A.
Wesolowski
, and
A.
Dreuw
, “
Implementation and application of the frozen density embedding theory with the algebraic diagrammatic construction scheme for the polarization propagator up to third order
,”
J. Chem. Theory Comput.
13
(
10
),
4711
4725
(
2017
).
31. .
M.
Scheurer
,
M. F.
Herbst
,
P.
Reinholdt
,
J. M. H.
Olsen
,
A.
Dreuw
, and
J.
Kongsted
, “
Polarizable embedding combined with the algebraic diagrammatic construction: Tackling excited states in biomolecular systems
,”
J. Chem. Theory Comput.
14
(
9
),
4870
4883
(
2018
).
32. .
R.
Sen
,
A.
Dreuw
, and
S.
Faraji
, “
Algebraic diagrammatic construction for the polarisation propagator in combination with effective fragment potentials
,”
Phys. Chem. Chem. Phys.
21
(
7
),
3683
3694
(
2019
).
33. .
C.
Hättig
, in
Advances in Quantum Chemistry
, edited by
H. J. Å.
Jensen
(
Academic Press
,
2005
), pp.
37
60
.
34. .
A. K.
Dutta
,
F.
Neese
, and
R.
Izsák
, “
Speeding up equation of motion coupled cluster theory with the chain of spheres approximation
,”
J. Chem. Phys.
144
(
3
),
034102
(
2016
).
35. .
F.
Neese
,
F.
Wennmohs
,
A.
Hansen
, and
U.
Becker
, “
Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange
,”
Chem. Phys.
356
(
1–3
),
98
109
(
2009
).
36. .
E. G.
Hohenstein
,
R. M.
Parrish
, and
T. J.
Martínez
, “
Tensor hypercontraction density fitting. I. Quartic scaling second- and third-order Møller-Plesset perturbation theory
,”
J. Chem. Phys.
137
(
4
),
044103
(
2012
).
37. .
M.
Schütz
, “
Oscillator strengths, first-order properties, and nuclear gradients for local ADC(2)
,”
J. Chem. Phys.
142
(
21
),
214103
(
2015
).
38. .
A.
Landau
,
K.
Khistyaev
,
S.
Dolgikh
, and
A. I.
Krylov
, “
Frozen natural orbitals for ionized states within equation-of-motion coupled-cluster formalism
,”
J. Chem. Phys.
132
(
1
),
014109
(
2010
).
39. .
P.
Pokhilko
,
D.
Izmodenov
, and
A. I.
Krylov
, “
Extension of frozen natural orbital approximation to open-shell references: Theory, implementation, and application to single-molecule magnets
,”
J. Chem. Phys.
152
(
3
),
034105
(
2020
).
40. .
B.
Helmich
and
C.
Hättig
, “
A pair natural orbital implementation of the coupled cluster model CC2 for excitation energies
,”
J. Chem. Phys.
139
(
8
),
084114
(
2013
).
41. .
M. S.
Frank
and
C.
Hättig
, “
A pair natural orbital based implementation of CCSD excitation energies within the framework of linear response theory
,”
J. Chem. Phys.
148
(
13
),
134102
(
2018
).
42. .
D.
Mester
,
P. R.
Nagy
, and
M.
Kállay
, “
Reduced-cost linear-response CC2 method based on natural orbitals and natural auxiliary functions
,”
J. Chem. Phys.
146
(
19
),
194102
(
2017
).
43. .
D.
Mester
,
P. R.
Nagy
, and
M.
Kállay
, “
Reduced-cost second-order algebraic-diagrammatic construction method for excitation energies and transition moments
,”
J. Chem. Phys.
148
(
9
),
094111
(
2018
).
44. .
A. K.
Dutta
,
M.
Saitow
,
B.
Demoulin
,
F.
Neese
, and
R.
Izsák
, “
A domain-based local pair natural orbital implementation of the equation of motion coupled cluster method for electron attached states
,”
J. Chem. Phys.
150
(
16
),
164123
(
2019
).
45. .
S.
Haldar
and
A. K.
Dutta
, “
An efficient Fock space multi-reference coupled cluster method based on natural orbitals: Theory, implementation, and benchmark
,”
J. Chem. Phys.
155
(
1
),
014105
(
2021
).
46. .
A. K.
Dutta
,
F.
Neese
, and
R.
Izsák
, “
Towards a pair natural orbital coupled cluster method for excited states
,”
J. Chem. Phys.
145
(
3
),
034102
(
2016
).
47. .
B.
Helmich
and
C.
Hättig
, “
A pair natural orbital based implementation of ADC(2)-x: Perspectives and challenges for response methods for singly and doubly excited states in large molecules
,”
Comput. Theor. Chem.
1040–1041
,
35
44
(
2014
).
48. .
E. R.
Davidson
, “
The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices
,”
J. Comput. Phys.
17
(
1
),
87
94
(
1975
).
49. .
A. L.
Dempwolff
,
A. M.
Belogolova
,
A. B.
Trofimov
, and
A.
Dreuw
, “
Intermediate state representation approach to physical properties of molecular electron-attached states: Theory, implementation, and benchmarking
,”
J. Chem. Phys.
154
(
10
),
104117
(
2021
).
50. .
M. D.
Prasad
,
S.
Pal
, and
D.
Mukherjee
, “
Some aspects of self-consistent propagator theories
,”
Phys. Rev. A
31
(
3
),
1287
1298
(
1985
).
51. .
M.
Hodecker
,
A. L.
Dempwolff
,
J.
Schirmer
, and
A.
Dreuw
, “
Theoretical analysis and comparison of unitary coupled-cluster and algebraic-diagrammatic construction methods for ionization
,”
J. Chem. Phys.
156
(
7
),
074104
(
2022
).
52. .
A. L.
Dempwolff
,
M.
Hodecker
, and
A.
Dreuw
, “
Vertical ionization potential benchmark for unitary coupled-cluster and algebraic-diagrammatic construction methods
,”
J. Chem. Phys.
156
(
5
),
054114
(
2022
).
53. .
P.-O.
Löwdin
, “
Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction
,”
Phys. Rev.
97
(
6
),
1474
1489
(
1955
).
54. .
T. L.
Barr
and
E. R.
Davidson
, “
Nature of the configuration-interaction method in ab initio calculations. I. Ne ground state
,”
Phys. Rev. A
1
(
3
),
644
658
(
1970
).
55. .
C.
Sosa
,
J.
Geertsen
,
G. W.
Trucks
,
R. J.
Bartlett
, and
J. A.
Franz
, “
Selection of the reduced virtual space for correlated calculations. An application to the energy and dipole moment of H2O
,”
Chem. Phys. Lett.
159
(
2–3
),
148
154
(
1989
).
56. .
A. G.
Taube
and
R. J.
Bartlett
, “
Frozen natural orbitals: Systematic basis set truncation for coupled-cluster theory
,”
Collect. Czech. Chem. Commun.
70
(
6
),
837
850
(
2005
).
57. .
C..
Møller
and
M. S.
Plesset
, “
Note on an approximation treatment for many-electron systems
,”
Phys. Rev.
46
(
7
),
618
622
(
1934
).
58. .
A.
Hellweg
,
S. A.
Grün
, and
C.
Hättig
, “
Benchmarking the performance of spin-component scaled CC2 in ground and electronically excited states
,”
Phys. Chem. Chem. Phys.
10
(
28
),
4119
4127
(
2008
).
59. .
E. G.
Hohenstein
and
C. D.
Sherrill
, “
Density fitting and Cholesky decomposition approximations in symmetry-adapted perturbation theory: Implementation and application to probe the nature of π–π interactions in linear acenes
,”
J. Chem. Phys.
132
(
18
),
184111
(
2010
).
60. .
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
, “
On some approximations in applications of Xα theory
,”
J. Chem. Phys.
71
(
8
),
003396
3402
(
2008
).
61. .
J. L.
Whitten
, “
Coulombic potential energy integrals and approximations
,”
J. Chem. Phys.
58
(
10
),
4496
4501
(
2003
).
62. .
S. F.
Boys
,
G. B.
Cook
,
C. M.
Reeves
, and
I.
Shavitt
, “
Automatic fundamental calculations of molecular structure
,”
Nature
178
(
4544
),
1207
1209
(
1956
).
63. .
C.
Hättig
and
F.
Weigend
, “
CC2 excitation energy calculations on large molecules using the resolution of the identity approximation
,”
J. Chem. Phys.
113
(
13
),
5154
5161
(
2000
).
64. .
M.
Feyereisen
,
G.
Fitzgerald
, and
A.
Komornicki
, “
Use of approximate integrals in ab initio theory. An application in MP2 energy calculations
,”
Chem. Phys. Lett.
208
(
5–6
),
359
363
(
1993
).
65. .
M.
Kállay
, “
A systematic way for the cost reduction of density fitting methods
,”
J. Chem. Phys.
141
(
24
),
244113
(
2014
).
66. .
F.
Neese
,
A.
Hansen
, and
D. G.
Liakos
, “
Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis
,”
J. Chem. Phys.
131
(
6
),
064103
(
2009
).
67. .
A. K.
Dutta
,
A.
Manna
,
B.
Jangid
,
K.
Majee
,
K.
Surjuse
,
M.
Mukherjee
,
M.
Thapa
,
S.
Arora
,
S.
Chamoli
,
S.
Haldar
,
S.
Chakraborty
, and
T.
Mukhopadhyay
, BAGH: A quantum chemistry software package,
2023
.
68. .
R.
Pant
,
S.
Ranga
,
A.
Bachhar
, and
A. K.
Dutta
, “
Pair natural orbital equation-of-motion coupled-cluster method for core binding energies: Theory, implementation, and benchmark
,”
J. Chem. Theory Comput.
18
(
8
),
4660
4673
(
2022
).
69. .
S.
Chamoli
,
K.
Surjuse
,
B.
Jangid
,
M. K.
Nayak
, and
A. K.
Dutta
, “
A reduced cost four-component relativistic coupled cluster method based on natural spinors
,”
J. Chem. Phys.
156
(
20
),
204120
(
2022
).
70. .
K.
Surjuse
,
S.
Chamoli
,
M. K.
Nayak
, and
A. K.
Dutta
, “
A low-cost four-component relativistic equation of motion coupled cluster method based on frozen natural spinors: Theory, implementation, and benchmark
,”
J. Chem. Phys.
157
(
20
),
204106
(
2022
).
71. .
Q.
Sun
, “
Libcint: An efficient general integral library for Gaussian basis functions
,”
J. Comput. Chem.
36
(
22
),
1664
1671
(
2015
).
72. .
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G. K.
Chan
, “
PySCF: The Python‐based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
(
1
),
e1340
(
2018
).
73. .
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
,
J. J.
Eriksen
,
Y.
Gao
,
S.
Guo
,
J.
Hermann
,
M. R.
Hermes
,
K.
Koh
,
P.
Koval
,
S.
Lehtola
,
Z.
Li
,
J.
Liu
,
N.
Mardirossian
,
J. D.
McClain
,
M.
Motta
,
B.
Mussard
,
H. Q.
Pham
,
A.
Pulkin
,
W.
Purwanto
,
P. J.
Robinson
,
E.
Ronca
,
E. R.
Sayfutyarova
,
M.
Scheurer
,
H. F.
Schurkus
,
J. E. T.
Smith
,
C.
Sun
,
S.-N.
Sun
,
S.
Upadhyay
,
L. K.
Wagner
,
X.
Wang
,
A.
White
,
J. D.
Whitfield
,
M. J.
Williamson
,
S.
Wouters
,
J.
Yang
,
J. M.
Yu
,
T.
Zhu
,
T. C.
Berkelbach
,
S.
Sharma
,
A. Y.
Sokolov
, and
G. K.-L.
Chan
, “
Recent developments in the PySCF program package
,”
J. Chem. Phys.
153
(
2
),
024109
(
2020
).
74. .
G. M. J.
Barca
,
C.
Bertoni
,
L.
Carrington
,
D.
Datta
,
N.
De Silva
,
J. E.
Deustua
,
D. G.
Fedorov
,
J. R.
Gour
,
A. O.
Gunina
,
E.
Guidez
,
T.
Harville
,
S.
Irle
,
J.
Ivanic
,
K.
Kowalski
,
S. S.
Leang
,
H.
Li
,
W.
Li
,
J. J.
Lutz
,
I.
Magoulas
,
J.
Mato
,
V.
Mironov
,
H.
Nakata
,
B. Q.
Pham
,
P.
Piecuch
,
D.
Poole
,
S. R.
Pruitt
,
A. P.
Rendell
,
L. B.
Roskop
,
K.
Ruedenberg
,
T.
Sattasathuchana
,
M. W.
Schmidt
,
J.
Shen
,
L.
Slipchenko
,
M.
Sosonkina
,
V.
Sundriyal
,
A.
Tiwari
,
J. L.
Galvez Vallejo
,
B.
Westheimer
,
M.
Włoch
,
P.
Xu
,
F.
Zahariev
, and
M. S.
Gordon
, “
Recent developments in the general atomic and molecular electronic structure system
,”
J. Chem. Phys.
152
(
15
),
154102
(
2020
).
75. .
R.
Bast
,
A. S. P.
Gomes
,
T.
Saue
,
L.
Visscher
,
H. J. Aa.
Jensen
,
I. A.
Aucar
,
V.
Bakken
,
C.
Chibueze
,
J.
Creutzberg
,
K. G.
Dyall
,
S.
Dubillard
,
U.
Ekström
,
E.
Eliav
,
T.
Enevoldsen
,
E.
Faßhauer
,
T.
Fleig
,
O.
Fossgaard
,
L.
Halbert
,
E. D.
Hedegård
,
T.
Helgaker
,
B.
Helmich-Paris
,
J.
Henriksson
,
M.
van Horn
,
M.
Iliaš
,
Ch.R.
Jacob
,
S.
Knecht
,
S.
Komorovský
,
O.
Kullie
,
J. K.
Lærdahl
,
C. V.
Larsen
,
Y. S.
Lee
,
N. H.
List
,
H. S.
Nataraj
,
M. K.
Nayak
,
P.
Norman
,
A.
Nyvang
,
G.
Olejniczak
,
J.
Olsen
,
J. M. H.
Olsen
,
A.
Papadopoulos
,
Y. C.
Park
,
J. K.
Pedersen
,
M.
Pernpointner
,
J. V.
Pototschnig
,
R.
Di Remigio Eikås
,
M.
Repiský
,
K.
Ruud
,
P.
Sałek
,
B.
Schimmelpfennig
,
B.
Senjean
,
A.
Shee
,
J.
Sikkema
,
A.
Sunaga
,
J.
Thyssen
,
J.
van Stralen
,
M. L.
Vidal
,
S.
Villaume
,
O.
Visser
,
T.
Winther
,
S.
Yamamoto
, and
X.
Yuan
, DIRAC23,
2023
.
76. .
D.
Tripathi
and
A. K.
Dutta
, “
Bound anionic states of DNA and RNA nucleobases: An EOM-CCSD investigation
,”
Int. J. Quantum Chem.
119
(
9
),
e25875
(
2019
).
77. .
M. J.
van Setten
,
F.
Caruso
,
S.
Sharifzadeh
,
X.
Ren
,
M.
Scheffler
,
F.
Liu
,
J.
Lischner
,
L.
Lin
,
J. R.
Deslippe
,
S. G.
Louie
,
C.
Yang
,
F.
Weigend
,
J. B.
Neaton
,
F.
Evers
, and
P.
Rinke
, “
GW100: Benchmarking G0W0 for molecular systems
,”
J. Chem. Theory Comput.
11
(
12
),
5665
5687
(
2015
).
78. .
K. B.
Bravaya
,
E.
Epifanovsky
, and
A. I.
Krylov
, “
Four bases score a run: Ab initio calculations quantify a cooperative effect of H-bonding and π-stacking on the ionization energy of adenine in the AATT tetramer
,”
J. Phys. Chem. Lett.
3
(
18
),
2726
2732
(
2012
).
79. .
D.
Golze
,
L.
Keller
, and
P.
Rinke
, “
Accurate absolute and relative core-level binding energies from GW
,”
J. Phys. Chem. Lett.
11
(
5
),
1840
1847
(
2020
).
80. .
J.
Li
,
Y.
Jin
,
P.
Rinke
,
W.
Yang
, and
D.
Golze
, “
Benchmark of GW methods for core-level binding energies
,”
J. Chem. Theory Comput.
18
(
12
),
7570
7585
(
2022
).
81. .
A. K.
Dutta
,
N.
Vaval
, and
S.
Pal
, “
Lower scaling approximation to EOM-CCSD: A critical assessment of the ionization problem
,”
Int. J. Quantum Chem.
118
(
14
),
e25594
(
2018
).

Supplementary Material

You do not currently have access to this content.