Nowadays, academic research relies not only on sharing with the academic community the scientific results obtained by research groups while studying certain phenomena but also on sharing computer codes developed within the community. In the field of atomistic modeling, these were software packages for classical atomistic modeling, and later for quantum-mechanical modeling; currently, with the fast growth of the field of machine-learning potentials, the packages implement such potentials. In this paper, we present the MLIP-3 package for constructing moment tensor potentials and performing their active training. This package builds on the MLIP-2 package [Novikov et al., “The MLIP package: moment tensor potentials with MPI and active learning,” Mach. Learn.: Sci. Technol., 2(2), 025002 (2020)], however, with a number of improvements, including active learning on atomic neighborhoods of a possibly large atomistic simulation.

1. .
K.
Gubaev
,
E. V.
Podryabinkin
,
G. L.
Hart
, and
A. V.
Shapeev
, “
Accelerating high-throughput searches for new alloys with active learning of interatomic potentials
,”
Comput. Mater. Sci.
156
,
148
156
(
2019
).
2. .
I. S.
Novikov
,
Y. V.
Suleimanov
, and
A. V.
Shapeev
, “
Automated calculation of thermal rate coefficients using ring polymer molecular dynamics and machine-learning interatomic potentials with active learning
,”
Phys. Chem. Chem. Phys.
20
,
29503
29512
(
2018
).
3. .
B.
Mortazavi
,
E. V.
Podryabinkin
,
I. S.
Novikov
,
T.
Rabczuk
,
X.
Zhuang
, and
A. V.
Shapeev
, “
Accelerating first-principles estimation of thermal conductivity by machine-learning interatomic potentials: A MTP/ShengBTE solution
,”
Comput. Phys. Commun.
258
,
107583
(
2021
).
4. .
E. V.
Podryabinkin
,
A. G.
Kvashnin
,
M.
Asgarpour
,
I. I.
Maslenikov
,
D. A.
Ovsyannikov
,
P. B.
Sorokin
,
M. Y.
Popov
, and
A. V.
Shapeev
, “
Nanohardness from first principles with active learning on atomic environments
,”
J. Chem. Theory Comput.
18
,
1109
1121
(
2022
).
5. .
I. I.
Novoselov
,
A. V.
Yanilkin
,
A. V.
Shapeev
, and
E. V.
Podryabinkin
, “
Moment tensor potentials as a promising tool to study diffusion processes
,”
Comput. Mater. Sci.
164
,
46
56
(
2019
).
6. .
A.
Thompson
,
L.
Swiler
,
C.
Trott
,
S.
Foiles
, and
G.
Tucker
, “
Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials
,”
J. Comput. Phys.
285
,
316
330
(
2015
).
7. .
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
, “
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,”
Phys. Rev. Lett.
104
,
136403
(
2010
).
8. .
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
9. .
A. V.
Shapeev
, “
Moment tensor potentials: A class of systematically improvable interatomic potentials
,”
Multiscale Model. Simul.
14
,
1153
1173
(
2016
).
10. .
R.
Drautz
, “
Atomic cluster expansion for accurate and transferable interatomic potentials
,”
Phys. Rev. B
99
,
014104
(
2019
).
11. .
G.
Dusson
,
M.
Bachmayr
,
G.
Csanyi
,
R.
Drautz
,
S.
Etter
,
C.
van der Oord
, and
C.
Ortner
, “
Atomic cluster expansion: Completeness, efficiency and stability
,”
J. Comput. Phys.
454
,
110946
(
2022
).
12. .
H.
Wang
,
L.
Zhang
,
J.
Han
, and
E.
Weinan
, “
DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
,”
Comput. Phys. Commun.
228
,
178
184
(
2018
).
13. .
G. P.
Pun
,
R.
Batra
,
R.
Ramprasad
, and
Y.
Mishin
, “
Physically informed artificial neural networks for atomistic modeling of materials
,”
Nat. Commun.
10
,
2339
(
2019
).
14. .
S.
Batzner
,
A.
Musaelian
,
L.
Sun
,
M.
Geiger
,
J. P.
Mailoa
,
M.
Kornbluth
,
N.
Molinari
,
T. E.
Smidt
, and
B.
Kozinsky
, “
E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
,”
Nat. Commun.
13
,
2453
(
2022
).
15. .
Y.
Zuo
,
C.
Chen
,
X.
Li
,
Z.
Deng
,
Y.
Chen
,
J.
Behler
,
G.
Csányi
,
A. V.
Shapeev
,
A. P.
Thompson
,
M. A.
Wood
, and
S. P.
Ong
, “
Performance and cost assessment of machine learning interatomic potentials
,”
J. Phys. Chem. A
124
,
731
745
(
2020
).
16. .
I. S.
Novikov
,
K.
Gubaev
,
E. V.
Podryabinkin
, and
A. V.
Shapeev
, “
The MLIP package: Moment tensor potentials with MPI and active learning
,”
Mach. Learn.: Sci. Technol.
2
,
025002
(
2021
).
17. .
E. V.
Podryabinkin
,
E. V.
Tikhonov
,
A. V.
Shapeev
, and
A. R.
Oganov
, “
Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning
,”
Phys. Rev. B
99
,
064114
(
2019
).
18. .
I. S.
Novikov
,
A. V.
Shapeev
, and
Y. V.
Suleimanov
, “
Ring polymer molecular dynamics and active learning of moment tensor potential for gas-phase barrierless reactions: Application to S + H2
,”
J. Chem. Phys.
151
,
224105
(
2019
).
19. .
B.
Mortazavi
,
I. S.
Novikov
, and
A. V.
Shapeev
, “
A machine-learning-based investigation on the mechanical/failure response and thermal conductivity of semiconducting BC2N monolayers
,”
Carbon
188
,
431
441
(
2022
).
20. .
A. V.
Shapeev
,
E. V.
Podryabinkin
,
K.
Gubaev
,
F.
Tasnádi
, and
I. A.
Abrikosov
, “
Elinvar effect in β-Ti simulated by on-the-fly trained moment tensor potential
,”
New J. Phys.
22
,
113005
(
2020
).
21. .
K.
Gubaev
,
E. V.
Podryabinkin
, and
A. V.
Shapeev
, “
Machine learning of molecular properties: Locality and active learning
,”
J. Chem. Phys.
148
,
241727
(
2018
).
22. .
I.
Novikov
,
B.
Grabowski
,
F.
Körmann
, and
A.
Shapeev
, “
Magnetic moment tensor potentials for collinear spin-polarized materials reproduce different magnetic states of bcc Fe
,”
npj Comput. Mater.
8
,
13
(
2022
).
23. .
R.
Fletcher
, “
A new variational result for quasi-Newton formulae
,”
SIAM J. Optim.
1
,
18
21
(
1991
).
24. .
E. V.
Podryabinkin
and
A. V.
Shapeev
, “
Active learning of linearly parametrized interatomic potentials
,”
Comput. Mater. Sci.
140
,
171
180
(
2017
).
25. .
S. A.
Goreinov
,
I. V.
Oseledets
,
D. V.
Savostyanov
,
E. E.
Tyrtyshnikov
, and
N. L.
Zamarashkin
, “
How to find a good submatrix
,”
Matrix Methods: Theory, Algorithms and Applications: Dedicated to the Memory of Gene Golub
(
World Scientific
,
2010
), pp.
247
256
.
26. .
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
27. .
I. S.
Novikov
,
K.
Gubaev
,
E. V.
Podryabinkin
, and
A. V.
Shapeev
, Supplemental materials: The Mlip Package User Manual, https://gitlab.com/ashapeev/mlip-2-paper-supp-info/-/blob/master/manual.pdf.
28. .
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
(
1993
).
29. .
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
,”
Phys. Rev. B
49
,
14251
(
1994
).
30. .
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
31. .
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
32. .
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
33. .
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1994
).
34. .
J.
Janssen
,
S.
Surendralal
,
Y.
Lysogorskiy
,
M.
Todorova
,
T.
Hickel
,
R.
Drautz
, and
J.
Neugebauer
, “
pyiron: An integrated development environment for computational materials science
,”
Comput. Mater. Sci.
163
,
24
36
(
2019
).
35. .
G.
Pizzi
,
A.
Cepellotti
,
R.
Sabatini
,
N.
Marzari
, and
B.
Kozinsky
, “
AiiDA: Automated interactive infrastructure and database for computational science
,”
Comput. Mater. Sci.
111
,
218
230
(
2016
).

Supplementary Material

You do not currently have access to this content.