The rotational excitation rates of NCCN species are studied for its collision with hydrogen (H2) in temperatures ranging from 1 to 100 K. Such collisions can occur in the interstellar medium with H2 in either para (p-) or ortho (o-) state, of which the p-H2 state can be approximated via its collision with He (using a scaling factor) or with a reduced rigid rotor-H2 surface (by averaging over various orientations of H2). In the current work, a four-dimensional (4D) ab initio potential energy surface (PES) is considered to study the collision dynamics of H2 in both p- and o-states and the results are compared with previous approximations. The 4D surface is constructed using the explicitly correlated coupled-cluster method CCSD(T)-F12b with the augmented triple zeta basis AVTZ and then fitted into an artificial neural networks (NN) model to augment the surface and account for missing data points. The radial coefficients are obtained from this NN fitted 4D PES via a least square fit over two spherical harmonics functions. The cross sections (σ) are computed using the close-coupling (CC) method (until 230 cm−1) for both p- and o-H2 collisions, and the rates are obtained by Boltzmann distribution over the translational energy of H2 until 100 K. The o-H2 rates are found to be higher by 25%–30% and 10%–20% compared to the p-H2 rates for Δj = 2 and higher order transitions, respectively. The coupled-state/centrifugal sudden approximated rates are also computed and found to have deviations as large as 40% when compared to CC rates, thus making quantitative descriptions unreliable.

1.
H. S. P.
Müller
,
S.
Thorwirth
,
D. A.
Roth
, and
G.
Winnewisser
, “
The cologne database for molecular spectroscopy, CDMS
,”
Astron. Astrophys.
370
,
L49
L52
(
2001
).
2.
A.
McKellar
, “
Evidence for the molecular origin of some hitherto unidentified interstellar lines
,”
Publ. Astron. Soc. Pac.
52
,
187
(
1940
).
3.
K. B.
Jefferts
,
A. A.
Penzias
, and
R. W.
Wilson
, “
Observation of the CN radical in the Orion Nebula and W51
,”
Astrophys. J.
161
,
L87
(
1970
).
4.
W. S.
Adams
, “
Some results with the COUDÉ spectrograph of the Mount Wilson observatory
,”
Astrophys. J.
93
,
11
(
1941
).
5.
D.
Bockelee-Morvan
and
J.
Crovisier
, “
Possible parents for the cometary CN radical: Photochemistry and excitation conditions
,”
Astron. Astrophys.
151
,
90
100
(
1985
); available at https://ui.adsabs.harvard.edu/abs/1985A&A...151...90B.
6.
Y.
Kalugina
,
J.
Kłos
, and
F.
Lique
, “
Collisional excitation of CN(X2Σ+) by para- and ortho-H2: Fine-structure resolved transitions
,”
J. Chem. Phys.
139
,
074301
(
2013
).
7.
Y.
Kalugina
,
F.
Lique
, and
J.
Kłos
, “
Hyperfine collisional rate coefficients of CN with H2(j = 0)
,”
Mon. Not. R. Astron. Soc.
422
,
812
818
(
2012
).
8.
S.
Petrie
,
T. J.
Millar
, and
A. J.
Markwick
, “
NCCN in TMC-1 and IRC+10216
,”
Mon. Not. R. Astron. Soc.
341
,
609
616
(
2003
).
9.
V. M.
Rivilla
,
I.
Jiménez-Serra
,
J.
García de la Concepción
,
J.
Martín-Pintado
,
L.
Colzi
,
L. F.
Rodríguez-Almeida
,
B.
Tercero
,
F.
Rico-Villas
,
S.
Zeng
,
S.
Martín
,
M. A.
Requena-Torres
, and
P.
de Vicente
, “
Detection of the cyanomidyl radical (HNCN): A new interstellar species with the NCN backbone
,”
Mon. Not. R. Astron. Soc.: Lett.
506
,
L79
L84
(
2021
).
10.
B. A.
McGuire
,
A. M.
Burkhardt
,
R. A.
Loomis
,
C. N.
Shingledecker
,
K. L.
Kelvin Lee
,
S. B.
Charnley
,
M. A.
Cordiner
,
E.
Herbst
,
S.
Kalenskii
,
E.
Momjian
,
E. R.
Willis
,
C.
Xue
,
A. J.
Remijan
, and
M. C.
McCarthy
, “
Early science from GOTHAM: Project overview, methods, and the detection of interstellar propargyl cyanide (HCCCH2CN) in TMC-1
,”
Astrophys. J. Lett.
900
,
L10
(
2020
).
11.
C. T.
Bop
,
N. A. B.
Faye
, and
K.
Hammami
, “
Potential energy surface and rate coefficients of protonated cyanogen (HNCCN+) induced by collision with helium (He) at low temperature
,”
Mon. Not. R. Astron. Soc.
478
,
4410
4415
(
2018
).
12.
A.
Kushwaha
,
S.
Kumar
, and
T. J.
Dhilip Kumar
, “
Interaction of cyanogen (NCCN) with proton: A new ab initio potential energy surface
,”
Chem. Phys. Lett.
761
,
138013
(
2020
).
13.
C. A.
Gottlieb
,
A. J.
Apponi
,
M. C.
McCarthy
,
P.
Thaddeus
, and
H.
Linnartz
, “
The rotational spectra of the HCCCNH+, NCCNH+, and CH3CNH+ ions
,”
J. Chem. Phys.
113
,
1910
1915
(
2000
).
14.
M.
Agúndez
,
J.
Cernicharo
,
P.
de Vicente
,
N.
Marcelino
,
E.
Roueff
,
A.
Fuente
,
M.
Gerin
,
M.
Guélin
,
C.
Albo
,
A.
Barcia
,
L.
Barbas
,
R.
Bolaño
,
F.
Colomer
,
M. C.
Diez
,
J. D.
Gallego
,
J.
Gómez-González
,
I.
López-Fernández
,
J. A.
López-Fernández
,
J. A.
López-Pérez
,
I.
Malo
,
J. M.
Serna
, and
F.
Tercero
, “
Probing non-polar interstellar molecules through their protonated form: Detection of protonated cyanogen (NCCNH+)
,”
Astron. Astrophys.
579
,
L10
(
2015
).
15.
M.
Agúndez
,
N.
Marcelino
, and
J.
Cernicharo
, “
Discovery of interstellar isocyanogen (CNCN): Further evidence that dicyanopolyynes are abundant in space
,”
Astrophys. J. Lett.
861
,
L22
(
2018
).
16.
D.
Ben Abdallah
,
M. M.
Al Mogren
,
S.
Dhaif Allah Al Harbi
, and
M.
Hochlaf
, “
Rotational (de-)excitation of isocyanogen by collision with helium at low energies
,”
J. Chem. Phys.
149
,
064305
(
2018
).
17.
M.
Agúndez
,
C.
Cabezas
,
N.
Marcelino
,
R.
Fuentetaja
,
B.
Tercero
,
P.
de Vicente
, and
J.
Cernicharo
, “
Discovery of interstellar NC4NH+: Dicyanopolyynes are indeed abundant in space
,”
Astron. Astrophys.
669
,
L1
(
2023
).
18.
M.
Guélin
and
J.
Cernicharo
, “
Organic molecules in interstellar space: Latest advances
,”
Front. Astron. Space Sci.
9
,
787567
(
2022
).
19.
F.
Lique
,
P.
Honvault
, and
A.
Faure
, “
Ortho–para-H2 conversion processes in astrophysical media
,”
Int. Rev. Phys. Chem.
33
,
125
149
(
2014
).
20.
B.
Yang
,
P.
Zhang
,
C.
Qu
,
X. H.
Wang
,
P. C.
Stancil
,
J. M.
Bowman
,
N.
Balakrishnan
,
B. M.
McLaughlin
, and
R. C.
Forrey
, “
Full-dimensional quantum dynamics of SiO in collision with H2
,”
J. Phys. Chem. A
122
,
1511
1520
(
2018
).
21.
M.
Lanza
,
Y.
Kalugina
,
L.
Wiesenfeld
, and
F.
Lique
, “
Near-resonant rotational energy transfer in HCl–H2 inelastic collisions
,”
J. Chem. Phys.
140
,
064316
(
2014
).
22.
C. T.
Bop
and
F.
Lique
, “
Collisional excitation of HCNH+ by He and H2: New potential energy surfaces and inelastic rate coefficients
,”
J. Chem. Phys.
158
,
074304
(
2023
).
23.
S.
Kumar
,
A.
Kushwaha
, and
T. J.
Dhilip Kumar
, “
Quantum dynamics study of rotational transitions of NCCN induced by He collision
,”
J. Chem. Phys.
149
,
174312
(
2018
).
24.
S.
Kumar
,
A.
Kushwaha
,
R.
Kaur
, and
T. J.
Dhilip Kumar
, “
Ultracold rotational quenching of NCCN scattering with 3He and 4He
,”
Chem. Phys. Lett.
738
,
136819
(
2020
).
25.
A.
Kushwaha
,
Ritika
,
P.
Chahal
, and
T. J.
Dhilip Kumar
, “
Rotational excitation of NCCN by p-H2(jc = 0) at low temperatures
,”
ACS Earth Space Chem.
7
,
515
522
(
2023
).
26.
T. B.
Adler
,
G.
Knizia
, and
H.-J.
Werner
, “
A simple and efficient CCSD(T)-F12 approximation
,”
J. Chem. Phys.
127
,
221106
(
2007
).
27.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
28.
D. E.
Woon
and
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon
,”
J. Chem. Phys.
103
,
4572
4585
(
1995
).
29.
A. S.
Abbott
,
J. M.
Turney
,
B.
Zhang
,
D. G. A.
Smith
,
D.
Altarawy
, and
H. F. I.
Schaefer
, “
PES-Learn: An open-source software package for the automated generation of machine learning models of molecular potential energy surfaces
,”
J. Chem. Theory Comput.
15
,
4386
4398
(
2019
).
30.
A.
Kushwaha
and
T. J.
Dhilip Kumar
, “
Benchmarking PES-Learn’s machine learning models predicting accurate potential energy surface for quantum scattering
,”
Int. J. Quantum Chem.
123
,
e27007
(
2023
).
31.
A.
Bohr
,
S.
Paolini
,
R. C.
Forrey
,
N.
Balakrishnan
, and
P. C.
Stancil
, “
A full-dimensional quantum dynamical study of H2 + H2 collisions: Coupled-states versus close-coupling formulation
,”
J. Chem. Phys.
140
,
064308
(
2014
).
32.
H.
Burton
,
R.
Mysliwiec
,
R. C.
Forrey
,
B. H.
Yang
,
P. C.
Stancil
, and
N.
Balakrishnan
, “
Fine-structure resolved rotational transitions and database for CN + H2 collisions
,”
Mol. Astrophys.
11
,
23
32
(
2018
).
33.
B.
Yang
,
P. C.
Stancil
,
N.
Balakrishnan
, and
R. C.
Forrey
, “
Rotational quenching of CO due to H2 collisions
,”
Astrophys. J.
718
,
1062
(
2010
).
34.
K. M.
Walker
,
F.
Lique
,
F.
Dumouchel
, and
R.
Dawes
, “
Inelastic rate coefficients for collisions of C6H with H2 and He
,”
Mon. Not. R. Astron. Soc.
466
,
831
837
(
2017
).
35.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
, “
Molpro: A general-purpose quantum chemistry program package
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
253
(
2012
).
36.
S.
Boys
and
F.
Bernardi
, “
The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors
,”
Mol. Phys.
19
,
553
566
(
1970
).
37.
A.
LeNail
, “
NN-SVG: Publication-ready neural network architecture schematics
,”
J. Open Source Software
4
,
747
(
2019
).
38.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
,
J.
Bradbury
,
G.
Chanan
,
T.
Killeen
,
Z.
Lin
,
N.
Gimelshein
,
L.
Antiga
,
A.
Desmaison
,
A.
Köpf
,
E.
Yang
,
Z.
DeVito
,
M.
Raison
,
A.
Tejani
,
S.
Chilamkurthy
,
B.
Steiner
,
L.
Fang
,
J.
Bai
, and
S.
Chintala
, “
PyTorch: An imperative style, high-performance deep learning library
,” in
Proceedings of the 33rd International Conference on Neural Information Processing Systems
(
Curran Associates, Inc.
,
Red Hook, NY
,
2019
), pp.
8024
8035
.
39.
N.
Sathyamurthy
, “
Effect of reagent rotation on elementary bimolecular exchange reactions
,”
Chem. Rev.
83
,
601
618
(
1983
).
40.
N.
Sathyamurthy
and
L. M.
Raff
, “
Quasiclassical trajectory studies using 3D spline interpolation of ab initio surfaces
,”
J. Chem. Phys.
63
,
464
473
(
1975
).
41.
N.
Balakrishnan
,
G.
Quéméner
,
R. C.
Forrey
,
R. J.
Hinde
, and
P. C.
Stancil
, “
Full-dimensional quantum dynamics calculations of H2–H2 collisions
,”
J. Chem. Phys.
134
,
014301
(
2011
).
42.
J.
Bergstra
,
B.
Komer
,
C.
Eliasmith
,
D.
Yamins
, and
D. D.
Cox
, “
Hyperopt: A Python library for model selection and hyperparameter optimization
,”
Comput. Sci. Discovery
8
,
014008
(
2015
).
43.
K.
Giri
,
L.
González-Sánchez
,
R.
Biswas
,
E.
Yurtsever
,
F. A.
Gianturco
,
N.
Sathyamurthy
,
U.
Lourderaj
, and
R.
Wester
, “
HeH+ collisions with H2: Rotationally inelastic cross sections and rate coefficients from quantum dynamics at interstellar temperatures
,”
J. Phys. Chem. A
126
,
2244
2261
(
2022
).
44.
T.-G.
Lee
,
N.
Balakrishnan
,
R. C.
Forrey
,
P. C.
Stancil
,
D. R.
Schultz
, and
G. J.
Ferland
, “
State-to-state rotational transitions in H2 + H2 collisions at low temperatures
,”
J. Chem. Phys.
125
,
114302
(
2006
).
45.
S.
Green
, “
Rotational excitation in H2–H2 collisions: Close-coupling calculations
,”
J. Chem. Phys.
62
,
2271
2277
(
1975
).
46.
N.
Sathyamurthy
, “
Computational fitting of ab initio potential energy surfaces
,”
Comput. Phys. Rep.
3
,
1
69
(
1985
).
47.
J. M.
Hutson
and
C. R.
Le Sueur
, “
MOLSCAT: A program for non-reactive quantum scattering calculations on atomic and molecular collisions
,”
Comput. Phys. Commun.
241
,
9
18
(
2019
).
48.
C.
Balança
,
E.
Quintas-Sánchez
,
R.
Dawes
,
F.
Dumouchel
,
F.
Lique
, and
N.
Feautrier
, “
Inelastic rate coefficients for collisions of C4H with H2
,”
Mon. Not. R. Astron. Soc.
508
,
1148
1155
(
2021
).
49.
F.
Khadri
,
A.
Chefai
, and
K.
Hammami
, “
Low-temperature rate constants and radiative transfer for rotational de-excitation of C5S by collision with He
,”
Mon. Not. R. Astron. Soc.
498
,
5159
5165
(
2020
).
50.
R.
Biswas
,
K.
Giri
,
L.
González-Sánchez
,
F. A.
Gianturco
,
U.
Lourderaj
,
N.
Sathyamurthy
,
A.
Veselinova
,
E.
Yurtsever
, and
R.
Wester
, “
Rotational state-changes in C5N by collisions with He and H2
,”
Mon. Not. R. Astron. Soc.
522
,
5775
5787
(
2023
).
51.
A.
Kushwaha
and
T. J.
Dhilip Kumar
(
2023
). “Quantum dynamics lab/PES2MP,’” Zenodo, https://doi.org/10.5281/zenodo.8232313.

Supplementary Material

You do not currently have access to this content.