With relevant chemical space growing larger and larger by the day, the ability to extend computational tractability over that larger space is of paramount importance in virtually all fields of science. The solution we aim to provide here for this issue is in the form of the generalized many-body expansion for building density matrices (GMBE-DM) based on the set-theoretical derivation with overlapping fragments, through which the energy can be obtained by a single Fock build. In combination with the purification scheme and the truncation at the one-body level, the DM-based GMBE(1)-DM-P approach shows both highly accurate absolute and relative energies for medium-to-large size water clusters with about an order of magnitude better than the corresponding energy-based GMBE(1) scheme. Simultaneously, GMBE(1)-DM-P is about an order of magnitude faster than the previously proposed MBE-DM scheme [F. Ballesteros and K. U. Lao, J. Chem. Theory Comput. 18, 179 (2022)] and is even faster than a supersystem calculation without significant parallelization to rescue the fragmentation method. For even more challenging systems including ion–water and ion–pair clusters, GMBE(1)-DM-P also performs about 3 and 30 times better than the energy-based GMBE(1) approach, respectively. In addition, this work provides the first overlapping fragmentation algorithm with a robust and effective binning scheme implemented internally in a popular quantum chemistry software package. Thus, GMBE(1)-DM-P opens a new door to accurately and efficiently describe noncovalent clusters using quantum mechanics.

1.
W.
Kohn
,
A. D.
Becke
, and
R. G.
Parr
,
J. Phys. Chem.
100
,
12974
(
1996
).
2.
R. O.
Jones
,
Rev. Mod. Phys.
87
,
897
(
2015
).
3.
N.
Mardirossian
and
M.
Head-Gordon
,
Mol. Phys.
115
,
2315
(
2017
).
4.
J.
Andzelm
and
E.
Wimmer
,
J. Chem. Phys.
96
,
1280
(
1992
).
5.
D. L.
Strout
and
G. E.
Scuseria
,
J. Chem. Phys.
102
,
8448
(
1995
).
6.
L.
Greengard
and
V.
Rokhlin
,
J. Chem. Phys.
73
,
325
(
1987
).
7.
C. A.
White
and
M.
Head-Gordon
,
J. Chem. Phys.
101
,
6593
(
1994
).
8.
R.
Shepard
,
Theor. Chem. Acc.
84
,
343
(
1993
).
9.
W. T.
Pollard
and
R. A.
Friesner
,
J. Chem. Phys.
99
,
6742
(
1993
).
10.
H.
Umeda
et al,
J. Comput. Chem.
31
,
2381
(
2010
).
11.
E.
Chow
,
X.
Liu
,
M.
Smelyanskiy
, and
J. R.
Hammond
,
J. Chem. Phys.
142
,
104103
(
2015
).
12.
H.
Huang
,
C. D.
Sherrill
, and
E.
Chow
,
J. Chem. Phys.
152
,
024122
(
2020
).
13.
R. C.
Walker
and
A. W.
Goetz
,
Electronic Structure Calculations on Graphics Processing Units
(
Wiley
,
2016
).
14.
G. J.
Tornai
,
I.
Ladjánszki
,
Á.
Rák
,
G.
Kis
, and
G.
Cserey
,
J. Chem. Theory Comput.
15
,
5319
(
2019
).
15.
B.
Hégely
and
M.
Kállay
,
Int. J. Quantum Chem.
122
,
e26782
(
2022
).
16.
T.
Rohwedder
and
R.
Schneider
,
J. Math. Chem.
49
,
1889
(
2011
).
17.
A. J.
Garza
and
G. E.
Scuseria
,
J. Chem. Phys.
137
,
054110
(
2012
).
18.
P.
Pulay
,
Chem. Phys. Lett.
73
,
393
(
1980
).
19.
P.
Pulay
,
J. Comput. Chem.
3
,
556
(
1982
).
20.
F.
Ballesteros
and
K. U.
Lao
,
J. Chem. Theory Comput.
18
,
179
(
2021
).
21.
P. G.
Mezey
,
J. Math. Chem.
18
,
141
(
1995
).
22.
T. E.
Exner
and
P. G.
Mezey
,
J. Comput. Chem.
24
,
1980
(
2003
).
23.
T. E.
Exner
and
P. G.
Mezey
,
J. Phys. Chem. A
108
,
4301
(
2004
).
24.
Z.
Szekeres
,
T.
Exner
, and
P. G.
Mezey
,
Int. J. Quantum Chem.
104
,
847
(
2005
).
25.
T. E.
Exner
and
P. G.
Mezey
,
Phys. Chem. Chem. Phys.
7
,
4061
(
2005
).
26.
Z.
Szekeres
,
P. G.
Mezey
, and
P. R.
Surján
,
Chem. Phys. Lett.
424
,
420
(
2006
).
27.
Y.
Inadomi
,
T.
Nakano
,
K.
Kitaura
, and
U.
Nagashima
,
Chem. Phys. Lett.
364
,
139
(
2002
).
28.
K.
Tamura
et al,
Bull. Chem. Soc. Jpn.
81
,
254
(
2008
).
29.
T.
Watanabe
et al,
J. Comput. Theor. Nanosci.
6
,
1328
(
2009
).
30.
X.
He
and
K. M.
Merz
,
J. Chem. Theory Comput.
6
,
405
(
2010
).
31.
X.
Chen
,
Y.
Zhang
, and
J. Z. H.
Zhang
,
J. Chem. Phys.
122
,
184105
(
2005
).
32.
X. H.
Chen
and
J. Z. H.
Zhang
,
J. Chem. Phys.
125
,
044903
(
2006
).
33.
M.
Shoji
,
M.
Kayanuma
,
H.
Umeda
, and
Y.
Shigeta
,
Chem. Phys. Lett.
634
,
181
(
2015
).
34.
W.
Yang
and
T.
Lee
,
J. Chem. Phys.
103
,
5674
(
1995
).
35.
D. G.
Fedorov
,
L. V.
Slipchenko
, and
K.
Kitaura
,
J. Phys. Chem. A
114
,
8742
(
2010
).
36.
D. G.
Fedorov
and
K.
Kitaura
,
Chem. Phys. Lett.
597
,
99
(
2014
).
37.
J. F.
Ouyang
,
M. W.
Cvitkovic
, and
R. P. A.
Bettens
,
J. Chem. Theory Comput.
10
,
3699
(
2014
).
38.
J. F.
Ouyang
and
R. P. A.
Bettens
,
J. Chem. Theory Comput.
11
,
5132
(
2015
).
39.
D.
Yuan
,
X.
Shen
,
W.
Li
, and
S.
Li
,
Phys. Chem. Chem. Phys.
18
,
16491
(
2016
).
40.
R. M.
Richard
and
J. M.
Herbert
,
J. Chem. Phys.
137
,
064113
(
2012
).
41.
R. M.
Richard
and
J. M.
Herbert
,
J. Chem. Theory Comput.
9
,
1408
(
2013
).
42.
L. D.
Jacobson
,
R. M.
Richard
,
K. U.
Lao
, and
J. M.
Herbert
,
Annu. Rep. Comput. Chem.
9
,
25
(
2013
).
43.
J. M.
Herbert
,
J. Chem. Phys.
151
,
170901
(
2019
).
44.
W.
Li
,
S.
Li
, and
Y.
Jiang
,
J. Phys. Chem. A
111
,
2193
(
2007
).
45.
S.
Hua
,
W.
Hua
, and
S.
Li
,
J. Phys. Chem. A
114
,
8126
(
2010
).
46.
S.
Li
,
W.
Li
, and
J.
Ma
,
Acc. Chem. Res.
47
,
2712
(
2014
).
47.
T.
Fang
,
Y.
Li
, and
S.
Li
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
7
,
e1297
(
2017
).
48.
V.
Ganesh
,
R. K.
Dongare
,
P.
Balanarayan
, and
S. R.
Gadre
,
J. Chem. Phys.
125
,
104109
(
2006
).
49.
N.
Sahu
and
S. R.
Gadre
,
Acc. Chem. Res.
47
,
2739
(
2014
).
50.
N. J.
Mayhall
and
K.
Raghavachari
,
J. Chem. Theory Comput.
7
,
1336
(
2011
).
51.
J.
Liu
and
J. M.
Herbert
,
J. Chem. Theory Comput.
12
,
572
(
2016
).
52.
K. U.
Lao
,
K.-Y.
Liu
,
R. M.
Richard
, and
J. M.
Herbert
,
J. Chem. Phys.
144
,
164105
(
2016
).
53.
W.
Li
,
C.
Chen
,
D.
Zhao
, and
S.
Li
,
Int. J. Quantum Chem.
115
,
641
(
2015
).
54.
E.
Epifanovsky
et al,
J. Chem. Phys.
155
,
084801
(
2021
).
55.
R. M.
Richard
,
K. U.
Lao
, and
J. M.
Herbert
,
J. Chem. Phys.
141
,
014108
(
2014
).
56.
R. M.
Richard
,
K. U.
Lao
, and
J. M.
Herbert
,
Acc. Chem. Res.
47
,
2828
(
2014
).
57.
E.
Prodan
and
W.
Kohn
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
11635
(
2005
).
58.
E. P.
Vance
,
An Introduction to Modern Mathematics
, Addison-Wesley Series in Mathematics (
Addison-Wesley Pub. Co.
,
Reading, MA
,
1963
).
59.
Y.
Li
,
D.
Yuan
,
Q.
Wang
,
W.
Li
, and
S.
Li
,
Phys. Chem. Chem. Phys.
20
,
13547
(
2018
).
60.
K.
Wang
,
W.
Li
, and
S.
Li
,
J. Chem. Theory Comput.
10
,
1546
(
2014
).
61.
M. S.
Gordon
,
D. G.
Fedorov
,
S. R.
Pruitt
, and
L. V.
Slipchenko
,
Chem. Rev.
112
,
632
(
2012
).
62.
R.
McWeeny
,
Rev. Mod. Phys.
32
,
335
(
1960
).
63.
M.
Challacombe
,
J. Chem. Phys.
110
,
2332
(
1999
).
64.
G. A.
Cisneros
,
Chem. Rev.
116
,
7501
(
2016
).
65.
J. P.
Heindel
and
S. S.
Xantheas
,
J. Chem. Theory Comput.
16
,
6843
(
2020
).
66.
S.
Kazachenko
and
A. J.
Thakkar
,
J. Chem. Phys.
138
,
194302
(
2013
).
67.
P.
Miró
and
C. J.
Cramer
,
Phys. Chem. Chem. Phys.
15
,
1837
(
2013
).
68.
See http://www.ergoscf.org/xyz/h2o.php for ErgoSCF,
2021
.
69.
S. R.
Gadre
,
S. D.
Yeole
, and
N.
Sahu
,
Chem. Rev.
114
,
12132
(
2014
).
70.
S. R.
Pruitt
,
C.
Steinmann
,
J. H.
Jensen
, and
M. S.
Gordon
,
J. Chem. Theory Comput.
9
,
2235
(
2013
).
71.
K. U.
Lao
and
J. M.
Herbert
,
J. Chem. Theory Comput.
14
,
5128
(
2018
).
72.
K.-Y.
Liu
and
J. M.
Herbert
,
J. Chem. Theory Comput.
16
,
475
(
2020
).
73.
R. M.
Richard
,
K. U.
Lao
, and
J. M.
Herbert
,
J. Chem. Phys.
139
,
224102
(
2013
).
74.
J. K.
Kazimirski
and
V.
Buch
,
J. Phys. Chem. A
107
,
9762
(
2003
).
75.
K. U.
Lao
and
J. M.
Herbert
,
J. Phys. Chem. A
119
,
235
(
2015
).
76.
J. P.
Heindel
and
S. S.
Xantheas
,
J. Chem. Theory Comput.
17
,
2200
(
2021
).
77.
K. M.
Herman
,
J. P.
Heindel
, and
S. S.
Xantheas
,
Phys. Chem. Chem. Phys.
23
,
11196
(
2021
).
78.
J. P.
Heindel
,
K. M.
Herman
, and
S. S.
Xantheas
,
Annu. Rev. Phys. Chem.
74
,
337
(
2023
).
79.
S.
Schürmann
,
J. R.
Vornweg
,
M.
Wolter
, and
C. R.
Jacob
,
Phys. Chem. Chem. Phys.
25
,
736
(
2023
).
80.
C.
Bannwarth
,
S.
Ehlert
, and
S.
Grimme
,
J. Chem. Theory Comput.
15
,
1652
(
2019
).
81.
C.
Bannwarth
et al,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1493
(
2021
).
82.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
83.
D.
Rappoport
and
F.
Furche
,
J. Chem. Phys.
133
,
134105
(
2010
).
84.
S. S.
Xantheas
,
Chem. Phys.
258
,
225
(
2000
).
85.
Y.
Chen
and
H.
Li
,
J. Phys. Chem. A
114
,
11719
(
2010
).
86.
C. H.
Pham
,
S. K.
Reddy
,
K.
Chen
,
C.
Knight
, and
F.
Paesani
,
J. Chem. Theory Comput.
13
,
1778
(
2017
).
87.
B.
Hribar
,
N. T.
Southall
,
V.
Vlachy
, and
K. A.
Dill
,
J. Am. Chem. Soc.
124
,
12302
(
2002
).
88.
T.-M.
Chang
and
L. X.
Dang
,
Chem. Rev.
106
,
1305
(
2006
).
89.
Y.
Marcus
,
Ions in Solution and Their Solvation
(
John Wiley & Sons
,
2015
).
90.
D.
Yuan
,
J. Chem. Theory Comput.
13
,
2696
(
2017
).

Supplementary Material

You do not currently have access to this content.