The transport of excess protons and hydroxide ions in water underlies numerous important chemical and biological processes. Accurately simulating the associated transport mechanisms ideally requires utilizing ab initio molecular dynamics simulations to model the bond breaking and formation involved in proton transfer and path-integral simulations to model the nuclear quantum effects relevant to light hydrogen atoms. These requirements result in a prohibitive computational cost, especially at the time and length scales needed to converge proton transport properties. Here, we present machine-learned potentials (MLPs) that can model both excess protons and hydroxide ions at the generalized gradient approximation and hybrid density functional theory levels of accuracy and use them to perform multiple nanoseconds of both classical and path-integral proton defect simulations at a fraction of the cost of the corresponding ab initio simulations. We show that the MLPs are able to reproduce ab initio trends and converge properties such as the diffusion coefficients of both excess protons and hydroxide ions. We use our multi-nanosecond simulations, which allow us to monitor large numbers of proton transfer events, to analyze the role of hypercoordination in the transport mechanism of the hydroxide ion and provide further evidence for the asymmetry in diffusion between excess protons and hydroxide ions.

1.
S.
Peighambardoust
,
S.
Rowshanzamir
, and
M.
Amjadi
,
Int. J. Hydrogen Energy
35
,
9349
(
2010
).
2.
T. E.
DeCoursey
,
J. R. Soc., Interface
15
,
20180108
(
2018
).
4.
A.
Hassanali
,
F.
Giberti
,
J.
Cuny
,
T. D.
Kühne
, and
M.
Parrinello
,
Proc. Natl. Acad. Sci.
110
,
13723
(
2013
).
5.
B.
Halle
and
G.
Karlström
,
J. Chem. Soc., Faraday Trans. 2
79
,
1047
(
1983
).
6.
B.
Halle
and
G.
Karlström
,
J. Chem. Soc., Faraday Trans. 2
79
,
1031
(
1983
).
7.
H.
Weingärtner
and
C. A.
Chatzidimttriou-Dreismann
,
Nature
346
,
548
(
1990
).
8.
J. H.
Sluyters
and
M.
Sluyters-Rehbach
,
J. Phys. Chem. B
114
,
15582
(
2010
).
9.
M.
Tuckerman
,
K.
Laasonen
,
M.
Sprik
, and
M.
Parrinello
,
J. Phys. Chem.
99
,
5749
(
1995
).
10.
M.
Tuckerman
,
K.
Laasonen
,
M.
Sprik
, and
M.
Parrinello
,
J. Chem. Phys.
103
,
150
(
1995
).
12.
D.
Marx
,
M. E.
Tuckerman
,
J.
Hutter
, and
M.
Parrinello
,
Nature
397
,
601
(
1999
).
13.
D.
Marx
,
M. E.
Tuckerman
, and
M.
Parrinello
,
J. Phys.: Condens. Matter
12
,
A153
(
2000
).
14.
R.
Vuilleumier
and
D.
Borgis
,
J. Chem. Phys.
111
,
4251
(
1999
).
15.
T. J. F.
Day
,
U. W.
Schmitt
, and
G. A.
Voth
,
J. Am. Chem. Soc.
122
,
12027
(
2000
).
16.
M. E.
Tuckerman
,
D.
Marx
, and
M.
Parrinello
,
Nature
417
,
925
(
2002
).
17.
N.
Agmon
,
H. J.
Bakker
,
R. K.
Campen
,
R. H.
Henchman
,
P.
Pohl
,
S.
Roke
,
M.
Thämer
, and
A.
Hassanali
,
Chem. Rev.
116
,
7642
(
2016
).
18.
E.
Hückel
,
Z. Elektrochem. Angew. Phys. Chem.
34
,
546
(
1928
).
19.
M.
Eigen
,
Angew. Chem., Int. Ed. Engl.
3
,
1
(
1964
).
20.
F.
Stillinger
,
Theoretical Chemistry Advances and Perspectives
, edited by
H.
Eyring
(
Academic
,
New York
,
1978
), pp.
177
234
.
21.
G.
Zatsepina
,
J. Struct. Chem.
12
,
894
(
1972
).
22.
D.
Schiöberg
and
G.
Zundel
,
J. Chem. Soc., Faraday Trans. 2
69
,
771
(
1973
).
23.
N.
Librovich
,
V.
Sakun
, and
N.
Sokolov
,
Chem. Phys.
39
,
351
(
1979
).
24.
D. E.
Khoshtariya
and
N. O.
Berdzenishvili
,
Chem. Phys. Lett.
196
,
607
(
1992
).
26.
J. A.
Napoli
,
O.
Marsalek
, and
T. E.
Markland
,
J. Chem. Phys.
148
,
222833
(
2018
).
27.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
100
,
5106
(
1994
).
28.
S.
Jang
and
G. A.
Voth
,
J. Chem. Phys.
111
,
2371
(
1999
).
29.
I. R.
Craig
and
D. E.
Manolopoulos
,
J. Chem. Phys.
121
,
3368
(
2004
).
30.
S.
Habershon
,
D. E.
Manolopoulos
,
T. E.
Markland
, and
T. F.
Miller
,
Annu. Rev. Phys. Chem.
64
,
387
(
2013
).
31.
M.
Ceriotti
,
W.
Fang
,
P. G.
Kusalik
,
R. H.
McKenzie
,
A.
Michaelides
,
M. A.
Morales
, and
T. E.
Markland
,
Chem. Rev.
116
,
7529
(
2016
).
32.
T. E.
Markland
and
M.
Ceriotti
,
Nat. Rev. Chem.
2
,
0109
(
2018
).
33.
M.
Tuckerman
,
B. J.
Berne
, and
G. J.
Martyna
,
J. Chem. Phys.
97
,
1990
(
1992
).
34.
T. E.
Markland
and
D. E.
Manolopoulos
,
J. Chem. Phys.
129
,
024105
(
2008
).
35.
T. E.
Markland
and
D. E.
Manolopoulos
,
Chem. Phys. Lett.
464
,
256
(
2008
).
36.
G. S.
Fanourgakis
,
T. E.
Markland
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
131
,
094102
(
2009
).
37.
O.
Marsalek
and
T. E.
Markland
,
J. Chem. Phys.
144
,
054112
(
2016
).
38.
V.
Kapil
,
J.
VandeVondele
, and
M.
Ceriotti
,
J. Chem. Phys.
144
,
054111
(
2016
).
39.
O.
Marsalek
and
T. E.
Markland
,
J. Phys. Chem. Lett.
8
,
1545
(
2017
).
40.
P.
Gasparotto
,
A. A.
Hassanali
, and
M.
Ceriotti
,
J. Chem. Theory Comput.
12
,
1953
(
2016
).
41.
B.
Cheng
,
E. A.
Engel
,
J.
Behler
,
C.
Dellago
, and
M.
Ceriotti
,
Proc. Natl. Acad. Sci.
116
,
1110
(
2019
).
42.
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
146401
(
2007
).
43.
J.
Behler
,
J. Chem. Phys.
134
,
074106
(
2011
).
44.
J.
Behler
,
J. Phys.: Condens. Matter
26
,
183001
(
2014
).
45.
S.
Kondati Natarajan
,
T.
Morawietz
, and
J.
Behler
,
Phys. Chem. Chem. Phys.
17
,
8356
(
2015
).
46.
C.
Schran
,
J.
Behler
, and
D.
Marx
,
J. Chem. Theory Comput.
16
,
88
(
2019
).
47.
M.
Hellström
and
J.
Behler
,
J. Phys. Chem. Lett.
7
,
3302
(
2016
).
48.
M.
Hellström
,
M.
Ceriotti
, and
J.
Behler
,
J. Phys. Chem. B
122
,
10158
(
2018
).
49.
T.
Morawietz
,
O.
Marsalek
,
S. R.
Pattenaude
,
L. M.
Streacker
,
D.
Ben-Amotz
, and
T. E.
Markland
,
J. Phys. Chem. Lett.
9
,
851
(
2018
).
50.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
51.
Y.
Zhang
and
W.
Yang
,
Phys. Rev. Lett.
80
,
890
(
1998
).
52.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
53.
L.
Goerigk
and
S.
Grimme
,
Phys. Chem. Chem. Phys.
13
,
6670
(
2011
).
54.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
55.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
(
2005
).
56.
T. D.
Kühne
,
M.
Iannuzzi
,
M. D.
Ben
,
V. V.
Rybkin
,
P.
Seewald
,
F.
Stein
,
T.
Laino
,
R. Z.
Khaliullin
,
O.
Schütt
,
F.
Schiffmann
,
D.
Golze
,
J.
Wilhelm
,
S.
Chulkov
,
M. H.
Bani-Hashemian
,
V.
Weber
,
U.
Borštnik
,
M.
Taillefumier
,
A. S.
Jakobovits
,
A.
Lazzaro
,
H.
Pabst
,
T.
Müller
,
R.
Schade
,
M.
Guidon
,
S.
Andermatt
,
N.
Holmberg
,
G. K.
Schenter
,
A.
Hehn
,
A.
Bussy
,
F.
Belleflamme
,
G.
Tabacchi
,
A.
Glöß
,
M.
Lass
,
I.
Bethune
,
C. J.
Mundy
,
C.
Plessl
,
M.
Watkins
,
J.
VandeVondele
,
M.
Krack
, and
J.
Hutter
,
J. Chem. Phys.
152
,
194103
(
2020
).
57.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
,
Phys. Rev. B
54
,
1703
(
1996
).
58.
G.
Lippert
,
J.
Hutter
, and
M.
Parrinello
,
Mol. Phys.
92
,
477
(
1997
).
59.
J.
VandeVondele
and
J.
Hutter
,
J. Chem. Phys.
127
,
114105
(
2007
).
60.
J.
Behler
, Runner – a software package for constructing high-dimensional neural network potentials,
2007–2016
.
61.
A.
Singraber
,
Mpbircher
,
S.
Reeve
,
D. W.
Swenson
,
J.
Lauret
, and
Philippedavid
, Compphysvienna/n2p2: Version 2.1.4,
2021
.
62.
T.
Morawietz
,
A.
Singraber
,
C.
Dellago
, and
J.
Behler
,
Proc. Natl. Acad. Sci.
113
,
8368
(
2016
).
63.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in’t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
, and
S. J.
Plimpton
,
Comput. Phys. Commun.
271
,
108171
(
2022
).
64.
A.
Singraber
,
J.
Behler
, and
C.
Dellago
,
J. Chem. Theory Comput.
15
,
1827
(
2019
).
65.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
66.
M.
Ceriotti
,
J.
More
, and
D. E.
Manolopoulos
,
Comput. Phys. Commun.
185
,
1019
(
2014
).
67.
V.
Kapil
,
M.
Rossi
,
O.
Marsalek
,
R.
Petraglia
,
Y.
Litman
,
T.
Spura
,
B.
Cheng
,
A.
Cuzzocrea
,
R. H.
Meißner
,
D. M.
Wilkins
,
B. A.
Helfrecht
,
P.
Juda
,
S. P.
Bienvenue
,
W.
Fang
,
J.
Kessler
,
I.
Poltavsky
,
S.
Vandenbrande
,
J.
Wieme
,
C.
Corminboeuf
,
T. D.
Kühne
,
D. E.
Manolopoulos
,
T. E.
Markland
,
J. O.
Richardson
,
A.
Tkatchenko
,
G. A.
Tribello
,
V.
Van Speybroeck
, and
M.
Ceriotti
,
Comput. Phys. Commun.
236
,
214
(
2019
).
68.
M.
Rossi
,
M.
Ceriotti
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
140
,
234116
(
2014
).
69.
M.
Ceriotti
,
M.
Parrinello
,
T. E.
Markland
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
133
,
124104
(
2010
).
70.
J.
VandeVondele
and
J.
Hutter
,
J. Chem. Phys.
118
,
4365
(
2003
).
71.
J.
Kolafa
,
J. Comput. Chem.
25
,
335
(
2003
).
72.
T. D.
Kühne
,
M.
Krack
,
F. R.
Mohamed
, and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
066401
(
2007
).
73.
A.
Luzar
and
D.
Chandler
,
Phys. Rev. Lett.
76
,
928
(
1996
).
74.
I.-C.
Yeh
and
G.
Hummer
,
J. Phys. Chem. B
108
,
15873
(
2004
).
75.
J. A.
Fournier
,
W. B.
Carpenter
,
N. H. C.
Lewis
, and
A.
Tokmakoff
,
Nat. Chem.
10
,
932
(
2018
).
76.
J. M.
Headrick
,
J. C.
Bopp
, and
M. A.
Johnson
,
J. Chem. Phys.
121
,
11523
(
2004
).
77.
J. M.
Headrick
,
E. G.
Diken
,
R. S.
Walters
,
N. I.
Hammer
,
R. A.
Christie
,
J.
Cui
,
E. M.
Myshakin
,
M. A.
Duncan
,
M. A.
Johnson
, and
K. D.
Jordan
,
Science
308
,
1765
(
2005
).
78.
K. R.
Asmis
,
N. L.
Pivonka
,
G.
Santambrogio
,
M.
Brümmer
,
C.
Kaposta
,
D. M.
Neumark
, and
L.
Woöste
,
Science
299
,
1375
(
2003
).
79.
S. T.
Roberts
,
P. B.
Petersen
,
K.
Ramasesha
,
A.
Tokmakoff
,
I. S.
Ufimtsev
, and
T. J.
Martinez
,
Proc. Natl. Acad. Sci.
106
,
15154
(
2009
).
80.
M.
Holz
,
S. R.
Heil
, and
A.
Sacco
,
Phys. Chem. Chem. Phys.
2
,
4740
(
2000
).
81.
M. J.
Gillan
,
D.
Alfè
, and
A.
Michaelides
,
J. Chem. Phys.
144
,
130901
(
2016
).
82.
S.
Habershon
,
T. E.
Markland
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
131
,
024501
(
2009
).
83.
B.
Chen
,
I.
Ivanov
,
M. L.
Klein
, and
M.
Parrinello
,
Phys. Rev. Lett.
91
,
215503
(
2003
).
84.
T. E.
Markland
and
B. J.
Berne
,
Proc. Natl. Acad. Sci.
109
,
7988
(
2012
).
85.
X.-Z.
Li
,
B.
Walker
, and
A.
Michaelides
,
Proc. Natl. Acad. Sci.
108
,
6369
(
2011
).
86.
R. H.
McKenzie
,
Chem. Phys. Lett.
535
,
196
(
2012
).
87.
R. H.
McKenzie
,
C.
Bekker
,
B.
Athokpam
, and
S. G.
Ramesh
,
J. Chem. Phys.
140
,
174508
(
2014
).
88.
M.
Guidon
,
F.
Schiffmann
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Phys.
128
,
214104
(
2008
).
89.
C.
Zhang
,
D.
Donadio
,
F.
Gygi
, and
G.
Galli
,
J. Chem. Theory Comput.
7
,
1443
(
2011
).
90.
R. A.
DiStasio
,
B.
Santra
,
Z.
Li
,
X.
Wu
, and
R.
Car
,
J. Chem. Phys.
141
,
084502
(
2014
).
91.
G.
Miceli
,
S.
de Gironcoli
, and
A.
Pasquarello
,
J. Chem. Phys.
142
,
034501
(
2015
).
92.
M. S.
Chen
,
J.
Lee
,
H.-Z.
Ye
,
T. C.
Berkelbach
,
D. R.
Reichman
, and
T. E.
Markland
,
J. Chem. Theory Comput.
19
,
4510
(
2023
).
93.
V.
Babin
,
C.
Leforestier
, and
F.
Paesani
,
J. Chem. Theory Comput.
9
,
5395
(
2013
).
94.
V.
Babin
,
G. R.
Medders
, and
F.
Paesani
,
J. Chem. Theory Comput.
10
,
1599
(
2014
).
95.
G. R.
Medders
,
V.
Babin
, and
F.
Paesani
,
J. Chem. Theory Comput.
10
,
2906
(
2014
).
96.
S. K.
Reddy
,
S. C.
Straight
,
P.
Bajaj
,
C. H.
Pham
,
M.
Riera
,
D. R.
Moberg
,
M. A.
Morales
,
C.
Knight
,
A. W.
Götz
, and
F.
Paesani
,
J. Chem. Phys.
145
,
194504
(
2016
).
97.
Q.
Yu
,
C.
Qu
,
P. L.
Houston
,
R.
Conte
,
A.
Nandi
, and
J. M.
Bowman
,
J. Phys. Chem. Lett.
13
,
5068
(
2022
).
98.
M. E.
Tuckerman
,
A.
Chandra
, and
D.
Marx
,
Acc. Chem. Res.
39
,
151
(
2006
).
99.
M.
Chen
,
L.
Zheng
,
B.
Santra
,
H.-Y.
Ko
,
R. A.
DiStasio
, Jr.
,
M. L.
Klein
,
R.
Car
, and
X.
Wu
,
Nat. Chem.
10
,
413
(
2018
).

Supplementary Material

You do not currently have access to this content.