Incorporating magnetic ions into semiconductor nanocrystals has emerged as a prominent research field for manipulating spin-related properties. The magnetic ions within the host semiconductor experience spin-exchange interactions with photogenerated carriers and are often involved in the recombination routes, stimulating special magneto-optical effects. The current account presents a comparative study, emphasizing the impact of engineering nanostructures and selecting magnetic ions in shaping carrier–magnetic ion interactions. Various host materials, including the II–VI group, halide perovskites, and I–III–VI2 in diverse structural configurations such as core/shell quantum dots, seeded nanorods, and nanoplatelets, incorporated with magnetic ions such as Mn2+, Ni2+, and Cu1+/2+ are highlighted. These materials have recently been investigated by us using state-of-the-art steady-state and transient optically detected magnetic resonance (ODMR) spectroscopy to explore individual spin-dynamics between the photogenerated carriers and magnetic ions and their dependence on morphology, location, crystal composition, and type of the magnetic ion. The information extracted from the analyses of the ODMR spectra in those studies exposes fundamental physical parameters, such as g-factors, exchange coupling constants, and hyperfine interactions, together providing insights into the nature of the carrier (electron, hole, dopant), its local surroundings (isotropic/anisotropic), and spin dynamics. The findings illuminate the importance of ODMR spectroscopy in advancing our understanding of the role of magnetic ions in semiconductor nanocrystals and offer valuable knowledge for designing magnetic materials intended for various spin-related technologies.

1.
R.
Beaulac
,
S. T.
Ochsenbein
, and
D. R.
Gamelin
,
Nanocrystal Quantum Dots
,
2nd ed.
, edited by
V. I.
Klimov
(
CRC Press
,
2010
).
2.
Introduction to the Physics of Dilute Magnetic Semiconductors
,
1st ed.
, edited by
J. A.
Gaj
and
J.
Kossut
(
Springer
,
Berlin, Heidelberg
,
2010
).
3.
S. C.
Erwin
,
L.
Zu
,
M. I.
Haftel
,
A. L.
Efros
,
T. A.
Kennedy
, and
D. J.
Norris
, “
Doping semiconductor nanocrystals
,”
Nature
436
,
91
94
(
2005
).
4.
L.
Besombes
,
Y.
Léger
,
L.
Maingault
,
D.
Ferrand
,
H.
Mariette
, and
J.
Cibert
, “
Probing the spin state of a single magnetic ion in an individual quantum dot
,”
Phys. Rev. Lett.
93
,
207403
(
2004
).
5.
L.
Besombes
,
H.
Boukari
,
C.
Le Gall
,
A.
Brunetti
,
C. L.
Cao
,
S.
Jamet
, and
B.
Varghese
, “
Optical control of the spin of a magnetic atom in a semiconductor quantum dot
,”
Nanophotonics
4
,
75
89
(
2015
).
6.
U. C.
Mendes
,
M.
Korkusinski
,
A. H.
Trojnar
, and
P.
Hawrylak
, “
Optical properties of charged quantum dots doped with a single magnetic impurity
,”
Phys. Rev. B
88
,
115306
(
2013
).
7.
L.
Cheng
,
C.
Yuan
,
S.
Shen
,
X.
Yi
,
H.
Gong
,
K.
Yang
, and
Z.
Liu
, “
Bottom-up synthesis of metal-ion-doped WS2 nanoflakes for cancer theranostics
,”
ACS Nano
9
,
11090
11101
(
2015
).
8.
F.
Dolde
,
I.
Jakobi
,
B.
Naydenov
,
N.
Zhao
,
S.
Pezzagna
,
C.
Trautmann
,
J.
Meijer
,
P.
Neumann
,
F.
Jelezko
, and
J.
Wrachtrup
, “
Room-temperature entanglement between single defect spins in diamond
,”
Nat. Phys.
9
,
139
143
(
2013
).
9.
J. K.
Furdyna
, “
Diluted magnetic semiconductors
,”
J. Appl. Phys.
64
,
R29
R64
(
1988
).
10.
R.
Beaulac
,
L.
Schneider
,
P. I.
Archer
,
G.
Bacher
, and
D. R.
Gamelin
, “
Light-induced spontaneous magnetization in doped colloidal quantum dots
,”
Science
325
,
973
976
(
2009
).
11.
R.
Beaulac
,
P. I.
Archer
,
J.
van Rijssel
,
A.
Meijerink
, and
D. R.
Gamelin
, “
Exciton storage by Mn2+ in colloidal Mn2+-doped CdSe quantum dots
,”
Nano Lett.
8
,
2949
2953
(
2008
).
12.
H. D.
Nelson
,
L. R.
Bradshaw
,
C. J.
Barrows
,
V. A.
Vlaskin
, and
D. R.
Gamelin
, “
Picosecond dynamics of excitonic magnetic polarons in colloidal diffusion-doped Cd1−xMnxSe quantum dots
,”
ACS Nano
9
,
11177
11191
(
2015
).
13.
R.
Beaulac
,
P. I.
Archer
,
S. T.
Ochsenbein
, and
D. R.
Gamelin
, “
Mn2+-doped CdSe quantum dots: New inorganic materials for spin-electronics and spin-photonics
,”
Adv. Funct. Mater.
18
,
3873
3891
(
2008
).
14.
M.
Nirmal
,
D. J.
Norris
,
M.
Kuno
,
M. G.
Bawendi
,
A. L.
Efros
, and
M.
Rosen
, “
Observation of the “dark exciton” in CdSe quantum dots
,”
Phys. Rev. Lett.
75
,
3728
3731
(
1995
).
15.
C.
de Mello Donegá
,
M.
Bode
, and
A.
Meijerink
, “
Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots
,”
Phys. Rev. B
74
,
085320
(
2006
).
16.
C. J.
Barrows
,
V. A.
Vlaskin
, and
D. R.
Gamelin
, “
Absorption and magnetic circular dichroism analyses of giant Zeeman splittings in diffusion-doped colloidal Cd1−xMnxSe quantum dots
,”
J. Phys. Chem. Lett.
6
,
3076
3081
(
2015
).
17.
D. A.
Bussian
,
S. A.
Crooker
,
M.
Yin
,
M.
Brynda
,
A. L.
Efros
, and
V. I.
Klimov
, “
Tunable magnetic exchange interactions in manganese-doped inverted core–shell ZnSe–CdSe nanocrystals
,”
Nat. Mater.
8
,
35
40
(
2009
).
18.
N.
Grumbach
,
A.
Rubin-Brusilovski
,
G. I.
Maikov
,
E.
Tilchin
, and
E.
Lifshitz
, “
Manipulation of carrier–Mn2+ exchange interaction in CdTe/CdSe colloidal quantum dots by controlled positioning of Mn2+ impurities
,”
J. Phys. Chem. C
117
,
21021
21027
(
2013
).
19.
K. M.
Hanif
,
R. W.
Meulenberg
, and
G. F.
Strouse
, “
Magnetic ordering in doped Cd1−xCoxSe diluted magnetic quantum dots
,”
J. Am. Chem. Soc.
124
,
11495
11502
(
2002
).
20.
L.
De Trizio
,
M.
Prato
,
A.
Genovese
,
A.
Casu
,
M.
Povia
,
R.
Simonutti
,
M. J. P.
Alcocer
,
C.
D’Andrea
,
F.
Tassone
, and
L.
Manna
, “
Strongly fluorescent quaternary Cu–In–Zn–S nanocrystals prepared from Cu1−xInS2 nanocrystals by partial cation exchange
,”
Chem. Mater.
24
,
2400
2406
(
2012
).
21.
V. A.
Vlaskin
,
C. J.
Barrows
,
C. S.
Erickson
, and
D. R.
Gamelin
, “
Nanocrystal diffusion doping
,”
J. Am. Chem. Soc.
135
,
14380
14389
(
2013
).
22.
Y.
Yang
,
O.
Chen
,
A.
Angerhofer
, and
Y. C.
Cao
, “
On doping CdS/ZnS core/shell nanocrystals with Mn
,”
J. Am. Chem. Soc.
130
,
15649
15661
(
2008
).
23.
I. A.
Merkulov
,
D. R.
Yakovlev
,
A.
Keller
,
W.
Ossau
,
J.
Geurts
,
A.
Waag
,
G.
Landwehr
,
G.
Karczewski
,
T.
Wojtowicz
, and
J.
Kossut
, “
Kinetic exchange between the conduction band electrons and magnetic ions in quantum-confined structures
,”
Phys. Rev. Lett.
83
,
1431
1434
(
1999
).
24.
R.
Beaulac
,
Y.
Feng
,
J. W.
May
,
E.
Badaeva
,
D. R.
Gamelin
, and
X.
Li
, “
Orbital pathways for Mn2+-carrier sp-d exchange in diluted magnetic semiconductor quantum dots
,”
Phys. Rev. B
84
,
195324
(
2011
).
25.
S. T.
Ochsenbein
and
D. R.
Gamelin
, “
Quantum oscillations in magnetically doped colloidal nanocrystals
,”
Nat. Nanotechnol.
6
,
112
115
(
2011
).
26.
L.
Besombes
,
Y.
Leger
,
L.
Maingault
,
D.
Ferrand
,
H.
Mariette
, and
J.
Cibert
, “
Carrier-induced spin splitting of an individual magnetic atom embedded in a quantum dot
,”
Phys. Rev. B
71
,
161307
(
2005
).
27.
M. M.
Glazov
,
E. L.
Ivchenko
,
L.
Besombes
,
Y.
Léger
,
L.
Maingault
, and
H.
Mariette
, “
Fine structure of exciton excited levels in a quantum dot with a magnetic ion
,”
Phys. Rev. B
75
,
205313
(
2007
).
28.
J.
Kossut
and
W.
Dobrowolski
,
Handbook of Magnetic Materials
, edited by
K. H. J.
Buschow
(
Elsevier Science
,
1993
), Chap. 4, Vol.
7
.
29.
P.
Kacman
, “
Spin interactions in diluted magnetic semiconductors and magnetic semiconductor structures
,”
Semicond. Sci. Technol.
16
,
R25
(
2001
).
30.
V.
Tiwari
,
M.
Arino
,
S.
Gupta
,
M.
Morita
,
T.
Inoue
,
D.
Caliste
,
P.
Pochet
,
H.
Boukari
,
S.
Kuroda
, and
L.
Besombes
, “
Hole-Cr+ nanomagnet in a semiconductor quantum dot
,”
Phys. Rev. B
104
,
L041301
(
2021
).
31.
W.
Mac
,
A.
Twardowski
, and
M. S.
Demianiuk
, “
s,p-d exchange interaction in Cr-based diluted magnetic semiconductors
,”
Phys. Rev. B
54
,
5528
5535
(
1996
).
32.
R.
Beaulac
,
P. I.
Archer
, and
D. R.
Gamelin
, “
Luminescence in colloidal Mn2+-doped semiconductor nanocrystals
,”
J. Solid State Chem.
181
,
1582
1589
(
2008
).
33.
R.
Beaulac
,
P. I.
Archer
,
X.
Liu
,
S.
Lee
,
G. M.
Salley
,
M.
Dobrowolska
,
J. K.
Furdyna
, and
D. R.
Gamelin
, “
Spin-polarizable excitonic luminescence in colloidal Mn2+-doped CdSe quantum dots
,”
Nano Lett.
8
,
1197
1201
(
2008
).
34.
B. B.
Srivastava
,
S.
Jana
, and
N.
Pradhan
, “
Doping Cu in semiconductor nanocrystals: Some old and some new physical insights
,”
J. Am. Chem. Soc.
133
,
1007
1015
(
2011
).
35.
S.
Brovelli
,
C.
Galland
,
R.
Viswanatha
, and
V. I.
Klimov
, “
Tuning radiative recombination in Cu-doped nanocrystals via electrochemical control of surface trapping
,”
Nano Lett.
12
,
4372
4379
(
2012
).
36.
P. J.
Whitham
,
K. E.
Knowles
,
P. J.
Reid
, and
D. R.
Gamelin
, “
Photoluminescence blinking and reversible electron trapping in copper-doped CdSe nanocrystals
,”
Nano Lett.
15
,
4045
4051
(
2015
).
37.
D. J.
Norris
,
N.
Yao
,
F. T.
Charnock
, and
T. A.
Kennedy
, “
High-quality manganese-doped ZnSe nanocrystals
,”
Nano Lett.
1
,
3
7
(
2001
).
38.
R.
Fainblat
,
J.
Frohleiks
,
F.
Muckel
,
J. H.
Yu
,
J.
Yang
,
T.
Hyeon
, and
G.
Bacher
, “
Quantum confinement-controlled exchange coupling in manganese(II)-doped CdSe two-dimensional quantum well nanoribbons
,”
Nano Lett.
12
,
5311
5317
(
2012
).
39.
J. R.
Murphy
,
S.
Delikanli
,
T.
Scrace
,
P.
Zhang
,
T.
Norden
,
T.
Thomay
,
A. N.
Cartwright
,
H. V.
Demir
, and
A.
Petrou
, “
Time-resolved photoluminescence study of CdSe/CdMnS/CdS core/multi-shell nanoplatelets
,”
Appl. Phys. Lett.
108
,
242406
(
2016
).
40.
P. I.
Archer
,
S. A.
Santangelo
, and
D. R.
Gamelin
, “
Direct observation of sp-d exchange interactions in colloidal Mn2+- and Co2+-doped CdSe quantum dots
,”
Nano Lett.
7
,
1037
1043
(
2007
).
41.
G.
Bacher
,
L.
Schneider
,
R.
Beaulac
,
P. I.
Archer
, and
D. R.
Gamelin
, “
Magnetic polaron formation dynamics in Mn2+-doped colloidal nanocrystals up to room temperature
,”
J. Korean Phys. Soc.
58
,
1261
1266
(
2011
).
42.
L.
Besombes
,
Y.
Leger
,
J.
Bernos
,
H.
Boukari
,
H.
Mariette
,
J. P.
Poizat
,
T.
Clement
,
J.
Fernández-Rossier
, and
R.
Aguado
, “
Optical probing of spin fluctuations of a single paramagnetic Mn atom in a semiconductor quantum dot
,”
Phys. Rev. B
78
,
125324
(
2008
).
43.
W. D.
Rice
,
W.
Liu
,
T. A.
Baker
,
N. A.
Sinitsyn
,
V. I.
Klimov
, and
S. A.
Crooker
, “
Revealing giant internal magnetic fields due to spin fluctuations in magnetically doped colloidal nanocrystals
,”
Nat. Nanotechnol.
11
,
137
142
(
2016
).
44.
L. R.
Bradshaw
,
J. W.
May
,
J. L.
Dempsey
,
X.
Li
, and
D. R.
Gamelin
, “
Ferromagnetic excited-state Mn2+ dimers in Zn1−x Mnx Se quantum dots observed by time-resolved magnetophotoluminescence
,”
Phys. Rev. B
89
,
115312
(
2014
).
45.
L.
Besombes
,
C. L.
Cao
,
S.
Jamet
,
H.
Boukari
, and
J.
Fernandez-Rossier
, “
Optical control of the spin state of two Mn atoms in a quantum dot
,”
Phys. Rev. B
86
,
165306
(
2012
).
46.
J.
Dehnel
,
Y.
Barak
,
I.
Meir
,
A. K.
Budniak
,
A. P.
Nagvenkar
,
D. R.
Gamelin
, and
E.
Lifshitz
, “
Insight into the spin properties in undoped and Mn-doped CdSe/CdS-seeded nanorods by optically detected magnetic resonance
,”
ACS Nano
14
,
13478
13490
(
2020
).
47.
R.
Strassberg
,
S.
Delikanli
,
Y.
Barak
,
J.
Dehnel
,
A.
Kostadinov
,
G.
Maikov
,
P. L.
Hernandez-Martinez
,
M.
Sharma
,
H. V.
Demir
, and
E.
Lifshitz
, “
Persuasive evidence for electron-nuclear coupling in diluted magnetic colloidal nanoplatelets using optically detected magnetic resonance spectroscopy
,”
J. Phys. Chem. Lett.
10
,
4437
4447
(
2019
).
48.
Y.
Barak
,
I.
Meir
,
J.
Dehnel
,
F.
Horani
,
D. R.
Gamelin
,
A.
Shapiro
, and
E.
Lifshitz
, “
Uncovering the influence of Ni2+ doping in lead-halide perovskite nanocrystals using optically detected magnetic resonance spectroscopy
,”
Chem. Mater.
34
,
1686
1698
(
2022
).
49.
A.
Harchol
,
Y.
Barak
,
K. E.
Hughes
,
K. H.
Hartstein
,
H. j.
Jöbsis
,
P. T.
Prins
,
C.
de Mello Donegá
,
D. R.
Gamelin
, and
E.
Lifshitz
, “
Optically detected magnetic resonance spectroscopy of Cu-doped CdSe/CdS and CuInS2 colloidal quantum dots
,”
ACS Nano
16
,
12866
12877
(
2022
).
50.
E.
Lifshitz
,
L.
Fradkin
,
A.
Glozman
, and
L.
Langof
, “
Optically detected magnetic resonance studies of colloidal semiconductor nanocrystals
,”
Annu. Rev. Phys. Chem.
55
,
509
557
(
2004
).
51.
S. Y.
Lee
,
S.
Paik
,
D. R.
McCamey
, and
C.
Boehme
, “
Modulation frequency dependence of continuous-wave optically/electrically detected magnetic resonance
,”
Phys. Rev. B
86
,
115204
(
2012
).
52.
M.
Zavelani-Rossi
,
M. G.
Lupo
,
F.
Tassone
,
L.
Manna
, and
G.
Lanzani
, “
Suppression of biexciton Auger recombination in CdSe/CdS dot/rods: Role of the electronic structure in the carrier dynamics
,”
Nano Lett.
10
,
3142
3150
(
2010
).
53.
F. T.
Rabouw
,
P.
Lunnemann
,
R. J. A.
van Dijk-Moes
,
M.
Frimmer
,
F.
Pietra
,
A. F.
Koenderink
, and
D. D.
Vanmaekelbergh
, “
Reduced Auger recombination in single CdSe/CdS nanorods by one-dimensional electron delocalization
,”
Nano Lett.
13
,
4884
4892
(
2013
).
54.
L.
Carbone
,
C.
Nobile
,
M.
De Giorgi
,
F. D.
Sala
,
G.
Morello
,
P.
Pompa
,
M.
Hytch
,
E.
Snoeck
,
A.
Fiore
,
I. R.
Franchini
,
M.
Nadasan
,
A. F.
Silvestre
,
L.
Chiodo
,
S.
Kudera
,
R.
Cingolani
,
R.
Krahne
, and
L.
Manna
, “
Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach
,”
Nano Lett.
7
,
2942
2950
(
2007
).
55.
A.
Sitt
,
F. D.
Sala
,
G.
Menagen
, and
U.
Banin
, “
Multiexciton engineering in seeded core/shell nanorods: Transfer from type-I to quasi-type-II regimes
,”
Nano Lett.
9
,
3470
3476
(
2009
).
56.
B.
Siebers
,
L.
Biadala
,
D. R.
Yakovlev
,
A. V.
Rodina
,
T.
Aubert
,
Z.
Hens
, and
M.
Bayer
, “
Exciton spin dynamics and photoluminescence polarization of CdSe/CdS dot-in-rod nanocrystals in high magnetic fields
,”
Phys. Rev. B
91
,
155304
(
2015
).
57.
A.
Granados Del Águila
,
B.
Jha
,
F.
Pietra
,
E.
Groeneveld
,
C.
de Mello Donegá
,
J. C.
Maan
,
D.
Vanmaekelbergh
, and
P. C. M.
Christianen
, “
Observation of the full exciton and phonon fine structure in CdSe/CdS dot-in-rod heteronanocrystals
,”
ACS Nano
8
,
5921
5931
(
2014
).
58.
K. J.
van Schooten
,
J.
Huang
,
D. V.
Talapin
,
C.
Boehme
, and
J. M.
Lupton
, “
Spin-dependent electronic processes and long-lived spin coherence of deep-level trap sites in CdS nanocrystals
,”
Phys. Rev. B
87
,
125412
(
2013
).
59.
K. J.
van Schooten
,
J.
Huang
,
W. J.
Baker
,
D. V.
Talapin
,
C.
Boehme
, and
J. M.
Lupton
, “
Spin-dependent exciton quenching and spin coherence in CdSe/CdS nanocrystals
,”
Nano Lett.
13
,
65
71
(
2013
).
60.
S.
Delikanli
,
G.
Yu
,
A.
Yeltik
,
S.
Bose
,
T.
Erdem
,
J.
Yu
,
O.
Erdem
,
M.
Sharma
,
V. K.
Sharma
,
U.
Quliyeva
,
S.
Shendre
,
C.
Dang
,
D. H.
Zhang
,
T. C.
Sum
,
W.
Fan
, and
H. V.
Demir
, “
Ultrathin highly luminescent two‐monolayer colloidal CdSe nanoplatelets
,”
Adv. Funct. Mater.
29
,
1901028
(
2019
).
61.
S.
Ithurria
and
B.
Dubertret
, “
Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level
,”
J. Am. Chem. Soc.
130
,
16504
16505
(
2008
).
62.
S.
Delikanli
,
M. Z.
Akgul
,
J. R.
Murphy
,
B.
Barman
,
Y.
Tsai
,
T.
Scrace
,
P.
Zhang
,
B.
Bozok
,
P. L.
Hernández-Martínez
,
J.
Christodoulides
,
A. N.
Cartwright
,
A.
Petrou
, and
H. V.
Demir
, “
Mn2+-doped CdSe/CdS core/multishell colloidal quantum wells enabling tunable carrier-dopant exchange interactions
,”
ACS Nano
9
(
12
),
12473
12479
(
2015
).
63.
J. H.
Yu
,
X.
Liu
,
K. E.
Kweon
,
J.
Joo
,
J.
Park
,
K. T.
Ko
,
D. W.
Lee
,
S.
Shen
,
K.
Tivakornsasithorn
,
J. S.
Son
,
J. H.
Park
,
Y. W.
Kim
,
G. S.
Hwang
,
M.
Dobrowolska
,
J. K.
Furdyna
, and
T.
Hyeon
, “
Giant Zeeman splitting in nucleation-controlled doped CdSe:Mn2+ quantum nanoribbons
,”
Nat. Mater.
9
,
47
53
(
2010
).
64.
I. D.
Litvin
,
H.
Porteanu
,
E.
Lifshitz
, and
A. A.
Lipovskii
, “
Optically detected magnetic resonance studies of CdS nanoparticles grown in phosphate glass
,”
J. Cryst. Growth
198–199
,
313
315
(
1999
).
65.
D. R.
Ceratti
,
Y.
Rakita
,
L.
Cremonesi
,
R.
Tenne
,
V.
Kalchenko
,
M.
Elbaum
,
D.
Oron
,
M. A. C.
Potenza
,
G.
Hodes
, and
D.
Cahen
, “
Self-healing inside APbBr3 halide perovskite crystals
,”
Adv. Mater.
30
,
1706273
(
2018
).
66.
J.
Kang
and
L. W.
Wang
, “
High defect tolerance in lead halide perovskite CsPbBr3
,”
J. Phys. Chem. Lett.
8
,
489
493
(
2017
).
67.
H.
Huang
,
M. I.
Bodnarchuk
,
S. V.
Kershaw
,
M. V.
Kovalenko
, and
A. L.
Rogach
, “
Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance
,”
ACS Energy Lett.
2
,
2071
2083
(
2017
).
68.
A. V.
Cohen
,
D. A.
Egger
,
A. M.
Rappe
, and
L.
Kronik
, “
Breakdown of the static picture of defect energetics in halide perovskites: The case of the Br vacancy in CsPbBr3
,”
J. Phys. Chem. Lett.
10
,
4490
4498
(
2019
).
69.
A. A.
Zhumekenov
,
M. I.
Saidaminov
,
M. A.
Haque
,
E.
Alarousu
,
S. P.
Sarmah
,
B.
Murali
,
I.
Dursun
,
X. H.
Miao
,
A. L.
Abdelhady
,
T.
Wu
,
O. F.
Mohammed
, and
O. M.
Bakr
, “
Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length
,”
ACS Energy Lett.
1
,
32
37
(
2016
).
70.
L.
Protesescu
,
S.
Yakunin
,
M. I.
Bodnarchuk
,
F.
Krieg
,
R.
Caputo
,
C. H.
Hendon
,
R. X.
Yang
,
A.
Walsh
, and
M. V.
Kovalenko
, “
Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut
,”
Nano Lett.
15
,
3692
3696
(
2015
).
71.
M. Z.
Mayers
,
L. Z.
Tan
,
D. A.
Egger
,
A. M.
Rappe
, and
D. R.
Reichman
, “
How lattice and charge fluctuations control carrier dynamics in halide perovskites
,”
Nano Lett.
18
,
8041
8046
(
2018
).
72.
A. D.
Wright
,
C.
Verdi
,
R. L.
Milot
,
G. E.
Eperon
,
M. A.
Pérez-Osorio
,
H. J.
Snaith
,
F.
Giustino
,
M. B.
Johnston
, and
L. M.
Herz
, “
Electron-phonon coupling in hybrid lead halide perovskites
,”
Nat. Commun.
7
,
11755
(
2016
).
73.
J. S.
Yao
,
J.
Ge
,
B. N.
Han
,
K. H.
Wang
,
H. B.
Yao
,
H. L.
Yu
,
J. H.
Li
,
B. S.
Zhu
,
J. Z.
Song
,
C.
Chen
,
Q.
Zhang
,
H. B.
Zeng
,
Y.
Luo
, and
S. H.
Yu
, “
Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes
,”
J. Am. Chem. Soc.
140
,
3626
3634
(
2018
).
74.
W. J.
Mir
,
A.
Swarnkar
, and
A.
Nag
, “
Postsynthesis Mn-doping in CsPbI3 nanocrystals to stabilize the black perovskite phase
,”
Nanoscale
11
,
4278
4286
(
2019
).
75.
S.
Zhou
,
Y.
Zhu
,
J.
Zhong
,
F.
Tian
,
H.
Huang
,
J.
Chen
, and
D.
Chen
, “
Chlorine-additive-promoted incorporation of Mn2+ dopants into CsPbCl3 perovskite nanocrystals
,”
Nanoscale
11
,
12465
12470
(
2019
).
76.
Z.
Chen
,
H.
Chen
,
C.
Zhang
,
L.
Chen
,
Z.
Qin
,
H.
Sang
,
X.
Wang
, and
M.
Xiao
, “
Excitation-tailored dual-color emission of manganese(II)-doped perovskite nanocrystals
,”
Appl. Phys. Lett.
114
,
041902
(
2019
).
77.
S.
Wang
,
J.
Leng
,
Y.
Yin
,
J.
Liu
,
K.
Wu
, and
S.
Jin
, “
Ultrafast dopant-induced exciton Auger-like recombination in Mn-doped perovskite nanocrystals
,”
ACS Energy Lett.
5
,
328
334
(
2020
).
78.
Z.
Fang
,
M.
Shang
,
X.
Hou
,
Y.
Zheng
,
Z.
Du
,
Z.
Yang
,
K. C.
Chou
,
W.
Yang
,
Z. L.
Wang
, and
Y.
Yang
, “
Bandgap alignment of α-CsPbI3 perovskites with synergistically enhanced stability and optical performance via B-site minor doping
,”
Nano Energy
61
,
389
396
(
2019
).
79.
A.
Shapiro
,
M. W.
Heindl
,
F.
Horani
,
M.-H.
Dahan
,
J.
Tang
,
Y.
Amouyal
, and
E.
Lifshitz
, “
Significance of Ni doping in CsPbX3 nanocrystals via postsynthesis cation–anion coexchange
,”
J. Phys. Chem. C
123
,
24979
24987
(
2019
).
80.
G. H.
Ahmed
,
J.
Yin
,
O. M.
Bakr
, and
O. F.
Mohammed
, “
Near-unity photoluminescence quantum yield in inorganic perovskite nanocrystals by metal-ion doping
,”
J. Chem. Phys.
152
,
020902
(
2020
).
81.
Z.
Yong
,
S.
Guo
,
J.-P.
Ma
,
J.-Y.
Zhang
,
Z.
Li
,
Y.
Chen
,
B.
Zhang
,
Y.
Zhou
,
J.
Shu
,
J.
Gu
,
L.
Zheng
,
O. M.
Bakr
, and
H.
Sun
, “
Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield
,”
J. Am. Chem. Soc.
140
,
9942
9951
(
2018
).
82.
R. K.
Behera
,
A.
Dutta
,
D.
Ghosh
,
S.
Bera
,
S.
Bhattacharyya
, and
N.
Pradhan
, “
Doping the smallest Shannon radii transition metal ion Ni(II) for stabilizing α-CsPbI3 perovskite nanocrystals
,”
J. Phys. Chem. Lett.
10
,
7916
7921
(
2019
).
83.
K.
Xing
,
X.
Yuan
,
Y.
Wang
,
J.
Li
,
Y.
Wang
,
Y.
Fan
,
L.
Yuan
,
K.
Li
,
Z.
Wu
,
H.
Li
, and
J.
Zhao
, “
Improved doping and emission efficiencies of Mn-doped CsPbCl3 perovskite nanocrystals via nickel chloride
,”
J. Phys. Chem. Lett.
10
,
4177
4184
(
2019
).
84.
C.
Zhang
,
D.
Sun
,
C.-X.
Sheng
,
Y. X.
Zhai
,
K.
Mielczarek
,
A.
Zakhidov
, and
Z. V.
Vardeny
, “
Magnetic field effects in hybrid perovskite devices
,”
Nat. Phys.
11
,
427
434
(
2015
).
85.
X.
Liu
,
A.
Chanana
,
U.
Huynh
,
F.
Xue
,
P.
Haney
,
S.
Blair
,
X.
Jiang
, and
Z. V.
Vardeny
, “
Circular photogalvanic spectroscopy of Rashba splitting in 2D hybrid organic–inorganic perovskite multiple quantum wells
,”
Nat. Commun.
11
,
323
(
2020
).
86.
J.
Wang
,
C.
Zhang
,
H.
Liu
,
R.
McLaughlin
,
Y.
Zhai
,
S. R.
Vardeny
,
X.
Liu
,
S.
McGill
,
D.
Semenov
,
H.
Guo
,
R.
Tsuchikawa
,
V. V.
Deshpande
,
D.
Sun
, and
Z. V.
Vardeny
, “
Spin-optoelectronic devices based on hybrid organic-inorganic trihalide perovskites
,”
Nat. Commun.
10
,
129
(
2019
).
87.
P.
Odenthal
,
W.
Talmadge
,
N.
Gundlach
,
R.
Wang
,
C.
Zhang
,
D.
Sun
,
Z.-G.
Yu
,
Z.
Valy Vardeny
, and
Y. S.
Li
, “
Spin-polarized exciton quantum beating in hybrid organic–inorganic perovskites
,”
Nat. Phys.
13
,
894
899
(
2017
).
88.
V. V.
Belykh
,
D. R.
Yakovlev
,
M. M.
Glazov
,
P. S.
Grigoryev
,
M.
Hussain
,
J.
Rautert
,
D. N.
Dirin
,
M. V.
Kovalenko
, and
M.
Bayer
, “
Coherent spin dynamics of electrons and holes in CsPbBr3 perovskite crystals
,”
Nat. Commun.
10
,
673
(
2019
).
89.
M. J.
Crane
,
L. M.
Jacoby
,
T. A.
Cohen
,
Y.
Huang
,
C. K.
Luscombe
, and
D. R.
Gamelin
, “
Coherent spin precession and lifetime-limited spin dephasing in CsPbBr3 perovskite nanocrystals
,”
Nano Lett.
20
,
8626
8633
(
2020
).
90.
H.
Utzat
,
W.
Sun
,
A. E. K.
Kaplan
,
F.
Krieg
,
M.
Ginterseder
,
B.
Spokoyny
,
N. D.
Klein
,
K. E.
Shulenberger
,
C. F.
Perkinson
,
M. V.
Kovalenko
, and
M. G.
Bawendi
, “
Coherent single-photon emission from colloidal lead halide perovskite quantum dots
,”
Science
363
,
1068
1072
(
2019
).
91.
K. E.
Knowles
,
K. H.
Hartstein
,
T. B.
Kilburn
,
A.
Marchioro
,
H. D.
Nelson
,
P. J.
Whitham
, and
D. R.
Gamelin
, “
Luminescent colloidal semiconductor nanocrystals containing copper: Synthesis, photophysics, and applications
,”
Chem. Rev.
116
,
10820
10851
(
2016
).
92.
W.
van der Stam
,
A. C.
Berends
, and
C.
de Mello Donega
, “
Prospects of colloidal copper chalcogenide nanocrystals
,”
ChemPhysChem
17
,
559
581
(
2016
).
93.
A. C.
Berends
,
M. J. J.
Mangnus
,
C.
Xia
,
F. T.
Rabouw
, and
C.
de Mello Donega
, “
Optoelectronic properties of ternary I–III–VI2 semiconductor nanocrystals: Bright prospects with elusive origins
,”
J. Phys. Chem. Lett.
10
,
1600
1616
(
2019
).
94.
L. R.
Bradshaw
,
K. E.
Knowles
,
S.
McDowall
, and
D. R.
Gamelin
, “
Nanocrystals for luminescent solar concentrators
,”
Nano Lett.
15
,
1315
1323
(
2015
).
95.
F.
Meinardi
,
H.
McDaniel
,
F.
Carulli
,
A.
Colombo
,
K. A.
Velizhanin
,
N. S.
Makarov
,
R.
Simonutti
,
V. I.
Klimov
, and
S.
Brovelli
, “
Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots
,”
Nat. Nanotechnol.
10
,
878
885
(
2015
).
96.
K. E.
Knowles
,
T. B.
Kilburn
,
D. G.
Alzate
,
S.
McDowall
, and
D. R.
Gamelin
, “
Bright CuInS2/CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators
,”
Chem. Commun.
51
,
9129
9132
(
2015
).
97.
M. G.
Panthani
,
V.
Akhavan
,
B.
Goodfellow
,
J. P.
Schmidtke
,
L.
Dunn
,
A.
Dodabalapur
,
P. F.
Barbara
, and
B. A.
Korgel
, “
Synthesis of CuInS2, CuInSe2, and Cu(InxGa1−x)Se2 (CIGS) nanocrystal “inks” for printable photovoltaics
,”
J. Am. Chem. Soc.
130
,
16770
16777
(
2008
).
98.
J.
Yu
,
M.
Sharma
,
M.
Li
,
S.
Delikanli
,
A.
Sharma
,
M.
Taimoor
,
Y.
Altintas
,
J. R.
McBride
,
T.
Kusserow
,
T. C.
Sum
,
H. V.
Demir
, and
C.
Dang
, “
Low-threshold lasing from copper-doped CdSe colloidal quantum wells
,”
Laser Photonics Rev.
15
,
2100034
(
2021
).
99.
A. N.
Yadav
,
A. K.
Singh
,
D.
Chauhan
,
P. R.
Solanki
,
P.
Kumar
, and
K.
Singh
, “
Evaluation of dopant energy and Stokes shift in Cu-doped CdS quantum dots: Via spectro-electrochemical probing
,”
New J. Chem.
44
,
13529
13533
(
2020
).
100.
K. E.
Knowles
,
H. D.
Nelson
,
T. B.
Kilburn
, and
D. R.
Gamelin
, “
Singlet-triplet splittings in the luminescent excited states of colloidal Cu+:CdSe, Cu+:InP, and CuInS2 nanocrystals: Charge-transfer configurations and self-trapped excitons
,”
J. Am. Chem. Soc.
137
,
13138
13147
(
2015
).
101.
C.
Corrado
,
Y.
Jiang
,
F.
Oba
,
M.
Kozina
,
F.
Bridges
, and
J. Z.
Zhang
, “
Synthesis, structural, and optical properties of stable ZnS:Cu,Cl nanocrystals
,”
J. Phys. Chem. A
113
,
3830
3839
(
2009
).
102.
R.
Viswanatha
,
S.
Brovelli
,
A.
Pandey
,
S. A.
Crooker
, and
V. I.
Klimov
, “
Copper-doped inverted core/shell nanocrystals with “permanent” optically active holes
,”
Nano Lett.
11
,
4753
4758
(
2011
).
103.
G. K.
Grandhi
,
R.
Tomar
, and
R.
Viswanatha
, “
Study of surface and bulk electronic structure of II–VI semiconductor nanocrystals using Cu as a nanosensor
,”
ACS Nano
6
,
9751
9763
(
2012
).
104.
W. D.
Rice
,
H.
Mcdaniel
,
V. I.
Klimov
, and
S. A.
Crooker
, “
Magneto-optical properties of CuInS2 nanocrystals
,”
J. Phys. Chem. Lett.
5
,
4105
4109
(
2014
).
105.
A. S.
Fuhr
,
H. J.
Yun
,
N. S.
Makarov
,
H.
Li
,
H.
McDaniel
, and
V. I.
Klimov
, “
Light emission mechanisms in CuInS2 quantum dots evaluated by spectral electrochemistry
,”
ACS Photonics
4
,
2425
2435
(
2017
).
106.
V.
Pinchetti
,
M.
Lorenzon
,
H.
McDaniel
,
R.
Lorenzi
,
F.
Meinardi
,
V. I.
Klimov
, and
S.
Brovelli
, “
Spectro-electrochemical probing of intrinsic and extrinsic processes in exciton recombination in I-III-VI2 nanocrystals
,”
Nano Lett.
17
,
4508
4517
(
2017
).
107.
A. C.
Berends
,
F. T.
Rabouw
,
F. C. M.
Spoor
,
E.
Bladt
,
F. C.
Grozema
,
A. J.
Houtepen
,
L. D. A.
Siebbeles
, and
C.
de Mello Donegá
, “
Radiative and nonradiative recombination in CuInS2 nanocrystals and CuInS2-based core/shell nanocrystals
,”
J. Phys. Chem. Lett.
7
,
3503
3509
(
2016
).
108.
A.
Shabaev
,
M. J.
Mehl
, and
A. L.
Efros
, “
Energy band structure of CuInS2 and optical spectra of CuInS2 nanocrystals
,”
Phys. Rev. B
92
,
035431
(
2015
).
109.
D. H.
Jara
,
K. G.
Stamplecoskie
, and
P. V.
Kamat
, “
Two distinct transitions in CuxInS2 quantum dots. Bandgap versus sub-bandgap excitations in copper-deficient structures
,”
J. Phys. Chem. Lett.
7
,
1452
1459
(
2016
).
110.
A.
Fuhr
,
H. J.
Yun
,
S. A.
Crooker
, and
V. I.
Klimov
, “
Spectroscopic and magneto-optical signatures of Cu1+ and Cu2+ defects in copper indium sulfide quantum dots
,”
ACS Nano
14
,
2212
2223
(
2020
).
111.
C.
Xia
,
P.
Tamarat
,
L.
Hou
,
S.
Busatto
,
J. D.
Meeldijk
,
C.
de Mello Donega
, and
B.
Lounis
, “
Unraveling the emission pathways in copper indium sulfide quantum dots
,”
ACS Nano
15
,
17573
17581
(
2021
).
112.
S. O. M.
Hinterding
,
M. J. J.
Mangnus
,
P. T.
Prins
,
H. J.
Jöbsis
,
S.
Busatto
,
D.
Vanmaekelbergh
,
C.
de Mello Donega
, and
F. T.
Rabouw
, “
Unusual spectral diffusion of single CuInS2 quantum dots sheds light on the mechanism of radiative decay
,”
Nano Lett.
21
,
658
665
(
2021
).
113.
K. E.
Hughes
,
K. H.
Hartstein
, and
D. R.
Gamelin
, “
Photodoping and transient spectroscopies of copper-doped CdSe/CdS nanocrystals
,”
ACS Nano
12
,
718
728
(
2018
).
You do not currently have access to this content.