Chiral molecules have the potential for creating new magnetic devices by locally manipulating the magnetic properties of metallic surfaces. When chiral polypeptides chemisorb onto ferromagnets, they can induce magnetization locally by spin exchange interactions. However, direct imaging of surface magnetization changes induced by chiral molecules was not previously realized. Here, we use magneto-optical Kerr microscopy to image domains in thin films and show that chiral polypeptides strongly pin domains, increasing the coercive field locally. In our study, we also observe a rotation of the easy magnetic axis toward the out-of-plane, depending on the sample’s domain size and the adsorption area. These findings show the potential of chiral molecules to control and manipulate magnetization and open new avenues for future research on the relationship between chirality and magnetization.

1.
R.
Naaman
,
Y.
Paltiel
, and
D. H.
Waldeck
, “
Chiral molecules and the electron spin
,”
Nat. Rev. Chem.
3
(
4
),
250
260
(
2019
).
2.
K.
Ray
,
S. P.
Ananthavel
,
D. H.
Waldeck
, and
R.
Naaman
, “
Asymmetric scattering of polarized electrons by organized organic films of chiral molecules
,”
Science
283
(
5403
),
814
816
(
1999
).
3.
F.
Evers
,
A.
Aharony
,
N.
Bar-Gill
,
O.
Entin-Wohlman
,
P.
Hedegård
,
O.
Hod
,
P.
Jelinek
,
G.
Kamieniarz
,
M.
Lemeshko
,
K.
Michaeli
,
V.
Mujica
,
R.
Naaman
,
Y.
Paltiel
,
S.
Refaely-Abramson
,
O.
Tal
,
J.
Thijssen
,
M.
Thoss
,
J. M.
van Ruitenbeek
,
L.
Venkataraman
,
D. H.
Waldeck
,
B.
Yan
, and
L.
Kronik
, “
Theory of chirality induced spin selectivity: Progress and challenges
,”
Adv. Mater.
34
(
13
),
2106629
(
2022
).
4.
Z.
Shang
,
T.
Liu
,
Q.
Yang
,
S.
Cui
,
K.
Xu
,
Y.
Zhang
,
J.
Deng
,
T.
Zhai
, and
X.
Wang
, “
Chiral-molecule-based spintronic devices
,”
Small
18
(
32
),
2203015
(
2022
).
5.
R.
Naaman
,
Y.
Paltiel
, and
D. H.
Waldeck
, “
Chiral induced spin selectivity gives a new twist on spin-control in chemistry
,”
Acc. Chem. Res.
53
(
11
),
2659
2667
(
2020
).
6.
K.
Banerjee-Ghosh
,
O.
Ben Dor
,
F.
Tassinari
,
E.
Capua
,
S.
Yochelis
,
A.
Capua
,
S.-H.
Yang
,
S. S. P.
Parkin
,
S.
Sarkar
,
L.
Kronik
,
L. T.
Baczewski
,
R.
Naaman
, and
Y.
Paltiel
, “
Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates
,”
Science
360
(
6395
),
1331
1334
(
2018
).
7.
F.
Tassinari
,
J.
Steidel
,
S.
Paltiel
,
C.
Fontanesi
,
M.
Lahav
,
Y.
Paltiel
, and
R.
Naaman
, “
Enantioseparation by crystallization using magnetic substrates
,”
Chem. Sci.
10
(
20
),
5246
5250
(
2019
).
8.
Y.
Lu
,
B. P.
Bloom
,
S.
Qian
, and
D. H.
Waldeck
, “
Enantiospecificity of cysteine adsorption on a ferromagnetic surface: Is it kinetically or thermodynamically controlled?
,”
J. Phys. Chem. Lett.
12
(
32
),
7854
7858
(
2021
).
9.
S. F.
Ozturk
and
D. D.
Sasselov
, “
On the origins of life’s homochirality: Inducing enantiomeric excess with spin-polarized electrons
,”
Proc. Natl. Acad. Sci. U. S. A.
119
(
28
),
e2204765119
(
2022
).
10.
M. R.
Safari
,
F.
Matthes
,
K.-H.
Ernst
,
D. E.
Bürgler
, and
C. M.
Schneider
, “
Enantiospecific adsorption on a ferromagnetic surface at the single-molecule scale
,” (
2022
).
11.
A.
Dianat
,
R.
Gutierrez
,
H.
Alpern
,
V.
Mujica
,
A.
Ziv
,
S.
Yochelis
,
O.
Millo
,
Y.
Paltiel
, and
G.
Cuniberti
, “
Role of exchange interactions in the magnetic response and intermolecular recognition of chiral molecules
,”
Nano Lett.
20
(
10
),
7077
7086
(
2020
).
12.
J.
Fransson
, “
Charge and spin dynamics and enantioselectivity in chiral molecules
,”
J. Phys. Chem. Lett.
13
(
3
),
808
814
(
2022
).
13.
O.
Ben Dor
,
S.
Yochelis
,
A.
Radko
,
K.
Vankayala
,
E.
Capua
,
A.
Capua
,
S.-H.
Yang
,
L. T.
Baczewski
,
S. S. P.
Parkin
,
R.
Naaman
, and
Y.
Paltiel
, “
Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field
,”
Nat. Commun.
8
(
1
),
14567
(
2017
).
14.
S.
Dalum
and
P.
Hedegård
, “
Theory of chiral induced spin selectivity
,”
Nano Lett.
19
(
8
),
5253
5259
(
2019
).
15.
J.
Fransson
, “
Vibrational origin of exchange splitting and chiral-induced spin selectivity
,”
Phys. Rev. B
102
(
23
),
235416
(
2020
).
16.
S.
Alwan
and
Y.
Dubi
, “
Spinterface origin for the chirality-induced spin-selectivity effect
,”
J. Am. Chem. Soc.
143
(
35
),
14235
14241
(
2021
).
17.
I.
Meirzada
,
N.
Sukenik
,
G.
Haim
,
S.
Yochelis
,
L. T.
Baczewski
,
Y.
Paltiel
, and
N.
Bar-Gill
, “
Long-time-scale magnetization ordering induced by an adsorbed chiral monolayer on ferromagnets
,”
ACS Nano
15
(
3
),
5574
5579
(
2021
).
18.
N.
Sukenik
,
F.
Tassinari
,
S.
Yochelis
,
O.
Millo
,
L. T.
Baczewski
, and
Y.
Paltiel
, “
Correlation between ferromagnetic layer easy axis and the tilt angle of self assembled chiral molecules
,”
Molecules
25
(
24
),
6036
(
2020
).
19.
A.
Sharma
,
P.
Matthes
,
I.
Soldatov
,
S. S. P. K.
Arekapudi
,
B.
Böhm
,
M.
Lindner
,
O.
Selyshchev
,
N.
Thi Ngoc Ha
,
M.
Mehring
,
C.
Tegenkamp
,
S. E.
Schulz
,
D. R. T.
Zahn
,
Y.
Paltiel
,
O.
Hellwig
, and
G.
Salvan
, “
Control of magneto-optical properties of cobalt-layers by adsorption of α-helical polyalanine self-assembled monolayers
,”
J. Mater. Chem. C
8
(
34
),
11822
11829
(
2020
).
20.
A.
Hubert
and
R.
Schäfer
,
Magnetic Domains: Analysis of Magnetic Microstructures
(
Springer
,
Berlin, Heidelberg
,
1998
), pp.
11
97
.
21.
Y.
Miura
,
S.
Kimura
,
Y.
Imanishi
, and
J.
Umemura
, “
Formation of oriented helical peptide layers on a gold surface due to the self-assembling properties of peptides
,”
Langmuir
14
(
24
),
6935
6940
(
1998
).
22.
T. K.
Das
,
F.
Tassinari
,
R.
Naaman
, and
J.
Fransson
, “
Temperature-dependent chiral-induced spin selectivity effect: Experiments and theory
,”
J. Phys. Chem. C
126
(
6
),
3257
3264
(
2022
).
23.
K.
Kondou
,
M.
Shiga
,
S.
Sakamoto
,
H.
Inuzuka
,
A.
Nihonyanagi
,
F.
Araoka
,
M.
Kobayashi
,
S.
Miwa
,
D.
Miyajima
, and
Y.
Otani
, “
Chirality-induced magnetoresistance due to thermally driven spin polarization
,”
J. Am. Chem. Soc.
144
(
16
),
7302
7307
(
2022
).
24.
J.
Fransson
, “
Charge redistribution and spin polarization driven by correlation induced electron exchange in chiral molecules
,”
Nano Lett.
21
(
7
),
3026
3032
(
2021
).
25.
S.
Naskar
,
V.
Mujica
, and
C.
Herrmann
, “
Chiral-induced spin selectivity and non-equilibrium spin accumulation in molecules and interfaces: A first-principles study
,”
J. Phys. Chem. Lett.
14
(
3
),
694
701
(
2023
).
26.
A.
Ziv
,
A.
Saha
,
H.
Alpern
,
N.
Sukenik
,
L. T.
Baczewski
,
S.
Yochelis
,
M.
Reches
, and
Y.
Paltiel
, “
AFM-based spin-exchange microscopy using chiral molecules
,”
Adv. Mater.
31
(
40
),
1904206
(
2019
).
27.
E. Z. B.
Smolinsky
,
A.
Neubauer
,
A.
Kumar
,
S.
Yochelis
,
E.
Capua
,
R.
Carmieli
,
Y.
Paltiel
,
R.
Naaman
, and
K.
Michaeli
, “
Electric field-controlled magnetization in GaAs/AlGaAs heterostructures–chiral organic molecules hybrids
,”
J. Phys. Chem. Lett.
10
(
5
),
1139
1145
(
2019
).
28.
S.
Ghosh
,
S.
Mishra
,
E.
Avigad
,
B. P.
Bloom
,
L. T.
Baczewski
,
S.
Yochelis
,
Y.
Paltiel
,
R.
Naaman
, and
D. H.
Waldeck
, “
Effect of chiral molecules on the electron’s spin wavefunction at interfaces
,”
J. Phys. Chem. Lett.
11
(
4
),
1550
1557
(
2020
).
29.
F.
Tassinari
,
D.
Amsallem
,
B. P.
Bloom
,
Y.
Lu
,
A.
Bedi
,
D. H.
Waldeck
,
O.
Gidron
, and
R.
Naaman
, “
Spin-dependent enantioselective electropolymerization
,”
J. Phys. Chem. C
124
(
38
),
20974
20980
(
2020
).
30.
S. F.
Ozturk
,
D. K.
Bhowmick
,
Y.
Kapon
,
Y.
Sang
,
A.
Kumar
,
Y.
Paltiel
,
R.
Naaman
, and
D. D.
Sasselov
, “
Chirality-induced magnetization of magnetite by an RNA precursor
,” (
2023
).

Supplementary Material

You do not currently have access to this content.