During devitrification, pre-existing crystallites grow by adding particles to their surface via a process that is either thermally activated (diffusive mode) or happens without kinetic barriers (fast crystal growth mode). It is yet unclear what factors determine the crystal growth mode and how to predict it. With simulations of repulsive hard-sphere-like (Weeks–Chandler–Andersen) glasses, we show for the first time that the same system at the same volume fraction and temperature can devitrify via both modes depending on the preparation protocol of the glass. We prepare two types of glass: conventional glass (CG) via fast quenching and uniform glass (UG) via density homogenization. First, we bring either glass into contact with a crystal (X) and find the inherent structure (CGX/UGX). During energy minimization, the crystal front grows deep into the CG interface, while the growth is minimal for UG. When thermal noise is added, this behavior is reflected in different crystallization dynamics. CGX exhibits a density drop at the crystal growth front, which correlates with enhanced dynamics at the interface and a fast growth mode. This mechanism may explain the faster crystal growth observed below the glass transition experimentally. In contrast, UGX grows via intermittent avalanche-like dynamics localized at the interface, a combination of localized mechanical defects and the exceptional mechanical stability imposed by the UG glass phase.

1.
R.
Laitinen
,
K.
Löbmann
,
C. J.
Strachan
,
H.
Grohganz
, and
T.
Rades
, “
Emerging trends in the stabilization of amorphous drugs
,”
Int. J. Pharm.
453
,
65
79
(
2013
).
2.
L.
Weng
and
P. R.
Beauchesne
, “
Dimethyl sulfoxide-free cryopreservation for cell therapy: A review
,”
Cryobiology
94
,
9
17
(
2020
).
3.
O. A.
Graeve
,
M. S.
García-Vázquez
,
A. A.
Ramírez-Acosta
, and
Z.
Cadieux
, “
Latest advances in manufacturing and machine learning of bulk metallic glasses
,”
Adv. Eng. Mater.
25
,
2201493
(
2023
).
4.
M. C.
Gonçalves
,
L. F.
Santos
, and
R. M.
Almeida
, “
Rare-earth-doped transparent glass ceramics
,”
C. R. Chim.
5
,
845
854
(
2002
).
5.
D. V.
Louzguine-Luzgin
, “
Vitrification and devitrification processes in metallic glasses
,”
J. Alloys Compd.
586
,
S2
S8
(
2014
).
6.
Q.
Zhang
,
D.
Sánchez-Fuentes
,
A.
Gómez
,
R.
Desgarceaux
,
B.
Charlot
,
J.
Gàzquez
,
A.
Carretero-Genevrier
, and
M.
Gich
, “
Tailoring the crystal growth of quartz on silicon for patterning epitaxial piezoelectric films
,”
Nanoscale Adv.
1
,
3741
3752
(
2019
).
7.
R. J.
Greet
and
D.
Turnbull
, “
Glass transition in o-terphenyl
,”
J. Chem. Phys.
46
,
1243
1251
(
1967
).
8.
T.
Hikima
,
Y.
Adachi
,
M.
Hanaya
, and
M.
Oguni
, “
Determination of potentially homogeneous-nucleation-based crystallization in o-terphenyl and an interpretation of the nucleation-enhancement mechanism
,”
Phys. Rev. B
52
,
3900
3908
(
1995
).
9.
T.
Konishi
and
H.
Tanaka
, “
Possible origin of enhanced crystal growth in a glass
,”
Phys. Rev. B
76
,
220201
(
2007
).
10.
Y.
Sun
,
H.
Xi
,
S.
Chen
,
M. D.
Ediger
, and
L.
Yu
, “
Crystallization near glass transition: Transition from diffusion-controlled to diffusionless crystal growth studied with seven polymorphs
,”
J. Phys. Chem. B
112
,
5594
5601
(
2008
).
11.
J.
Orava
and
A. L.
Greer
, “
Fast and slow crystal growth kinetics in glass-forming melts
,”
J. Chem. Phys.
140
,
214504
(
2014
).
12.
C. T.
Powell
,
H.
Xi
,
Y.
Sun
,
E.
Gunn
,
Y.
Chen
,
M. D.
Ediger
, and
L.
Yu
, “
Fast crystal growth in o-terphenyl glasses: A possible role for fracture and surface mobility
,”
J. Phys. Chem. B
119
,
10124
10130
(
2015
).
13.
A.
Newman
and
G.
Zografi
, “
What we need to know about solid-state isothermal crystallization of organic molecules from the amorphous state below the glass transition temperature
,”
Mol. Pharmaceutics
17
,
1761
1777
(
2020
).
14.
P.
Lucas
,
W.
Takeda
,
J.
Pries
,
J.
Benke-Jacob
, and
M.
Wuttig
, “
Fast crystallization below the glass transition temperature in hyperquenched systems
,”
J. Chem. Phys.
158
,
054502
(
2023
).
15.
G.
Sun
,
J.
Xu
, and
P.
Harrowell
, “
The mechanism of the ultrafast crystal growth of pure metals from their melts
,”
Nat. Mater.
17
,
881
886
(
2018
).
16.
G.
Sun
,
A.
Hawken
, and
P.
Harrowell
, “
The displacement field associated with the freezing of a melt and its role in determining crystal growth kinetics
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
3421
3426
(
2020
).
17.
Q.
Gao
,
J.
Ai
,
S.
Tang
,
M.
Li
,
Y.
Chen
,
J.
Huang
,
H.
Tong
,
L.
Xu
,
L.
Xu
,
H.
Tanaka
, and
P.
Tan
, “
Fast crystal growth at ultra-low temperatures
,”
Nat. Mater.
20
,
1431
1439
(
2021
).
18.
Y. C.
Hu
and
H.
Tanaka
, “
Revealing the role of liquid preordering in crystallisation of supercooled liquids
,”
Nat. Commun.
13
,
4519
(
2022
).
19.
E.
Zaccarelli
,
C.
Valeriani
,
E.
Sanz
,
W. C. K.
Poon
,
M. E.
Cates
, and
P. N.
Pusey
, “
Crystallization of hard-sphere glasses
,”
Phys. Rev. Lett.
103
,
135704
(
2009
).
20.
T.
Kawasaki
and
H.
Tanaka
, “
Structural evolution in the aging process of supercooled colloidal liquids
,”
Phys. Rev. E
89
,
062315
(
2014
).
21.
E.
Sanz
,
C.
Valeriani
,
E.
Zaccarelli
,
W. C. K.
Poon
,
M. E.
Cates
, and
P. N.
Pusey
, “
Avalanches mediate crystallization in a hard-sphere glass
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
75
80
(
2014
).
22.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
, “
Bond-orientational order in liquids and glasses
,”
Phys. Rev. B
28
,
784
805
(
1983
).
23.
W.
Lechner
and
C.
Dellago
, “
Accurate determination of crystal structures based on averaged local bond order parameters
,”
J. Chem. Phys.
129
,
114707
(
2008
).
24.
T.
Yanagishima
,
J.
Russo
, and
H.
Tanaka
, “
Common mechanism of thermodynamic and mechanical origin for ageing and crystallization of glasses
,”
Nat. Commun.
8
,
15954
(
2017
).
25.
T.
Yanagishima
,
J.
Russo
,
R. P. A.
Dullens
, and
H.
Tanaka
, “
Towards glasses with permanent stability
,”
Phys. Rev. Lett.
127
,
215501
(
2021
).
26.
H.
Tanaka
, “
Bond orientational order in liquids: Towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization: Bond orientational order in liquids
,”
Eur. Phys. J. E
35
,
113
(
2012
).
27.
T.
Kawasaki
and
H.
Tanaka
, “
Formation of a crystal nucleus from liquid
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
14036
14041
(
2010
).
28.
M.
Robles
and
M.
López de Haro
, “
On the liquid-glass transition line in monatomic Lennard-Jones fluids
,”
Europhys. Lett.
62
,
56
62
(
2003
); arXiv:0203603 [cond-mat].
29.
C. H.
Rycroft
, “
VORO++: A three-dimensional Voronoi cell library in C++
,”
Chaos
19
,
041111
(
2009
).
30.
P. N.
Pusey
,
E.
Zaccarelli
,
C.
Valeriani
,
E.
Sanz
,
W. C. K.
Poon
, and
M. E.
Cates
, “
Hard spheres: Crystallization and glass formation
,”
Philos. Trans. R. Soc., A
367
,
4993
5011
(
2009
).
31.
H. L.
Tepper
and
W. J.
Briels
, “
Simulations of crystallization and melting of the FCC (1 0 0) interface: The crucial role of lattice imperfections
,”
J. Cryst. Growth
230
,
270
276
(
2001
).
32.
F. F.
Abraham
,
N.-H.
Tsai
, and
G. M.
Pound
, “
A computer simulation of an amorphous thin film on a crystalline substrate
,”
Surf. Sci.
78
,
181
190
(
1978
).
33.
J. Q.
Broughton
,
G. H.
Gilmer
, and
K. A.
Jackson
, “
Crystallization rates of a Lennard-Jones liquid
,”
Phys. Rev. Lett.
49
,
1496
1500
(
1982
).
34.
K.
Sandomirski
,
S.
Walta
,
J.
Dubbert
,
E.
Allahyarov
,
A. B.
Schofield
,
H.
Löwen
,
W.
Richtering
, and
S. U.
Egelhaaf
, “
Heterogeneous crystallization of hard and soft spheres near flat and curved walls
,”
Eur. Phys. J.: Spec. Top.
223
,
439
454
(
2014
).
35.
H. E. A.
Huitema
,
M. J.
Vlot
, and
J. P.
van der Eerden
, “
Simulations of crystal growth from Lennard-Jones melt: Detailed measurements of the interface structure
,”
J. Chem. Phys.
111
,
4714
4723
(
1999
).
36.
H.
Tanaka
, “
Possible resolution of the Kauzmann paradox in supercooled liquids
,”
Phys. Rev. E
68
,
011505
(
2003
).
37.
T.
Yashima
,
M.
Tani
, and
R.
Kurita
, “
Filamentous crystal growth in organic liquids and selection of crystal morphology
,”
Sci. Rep.
12
,
9946
(
2022
).
38.
R. P. A.
Dullens
,
D. G. A. L.
Aarts
, and
W. K.
Kegel
, “
Dynamic broadening of the crystal-fluid interface of colloidal hard spheres
,”
Phys. Rev. Lett.
97
,
228301
(
2006
).
39.
E.
Burke
,
J. Q.
Broughton
, and
G. H.
Gilmer
, “
Crystallization of fcc (111) and (100) crystal-melt interfaces: A comparison by molecular dynamics for the Lennard-Jones system
,”
J. Chem. Phys.
89
,
1030
1041
(
1988
).

Supplementary Material

You do not currently have access to this content.