CO2 and CH4 hydrates are of great importance both from an energetic and from an environmental point of view. It is therefore highly relevant to quantify and understand the rate with which they grow. We use molecular dynamics simulations to shed light on the growth rate of these hydrates. We put the solid hydrate phase in contact with a guest aqueous solution in equilibrium with the pure guest phase and study the growth of both hydrates at 400 bars with temperature. We compare our results with previous calculations of the ice growth rate. We find a growth rate maximum as a function of the supercooling in all cases. The incorporation of guest molecules into the solid structure strongly decelerates hydrate growth. Consistently, ice grows faster than either hydrate and the CO2 hydrate grows faster than the CH4 one because of the higher solubility of CO2. We also quantify the molecular motion required to build the solids under study and find that the distance traveled by liquid molecules exceeds by orders of magnitude that advanced by any solid. Less molecular motion is needed in order for ice to grow as compared to the hydrates. Moreover, when temperature increases, more motion is needed for solid growth. Finally, we find a good agreement between our growth rate calculations and experiments of hydrate growth along the guest–solution interface. However, more work is needed to reconcile experiments of hydrate growth toward the solution among each other and with simulations.

1.
E. D.
Sloan
and
C. A.
Koh
,
Clathrate Hydrates of Natural Gases
,
3rd ed.
(
CRC Press
,
2007
).
2.
J. A.
Ripmeester
,
J. S.
Tse
,
C. I.
Ratcliffe
, and
B. M.
Powell
, “
A new clathrate hydrate structure
,”
Nature
325
,
135
(
1987
).
3.
R. K.
McMullan
and
G. A.
Jeffrey
, “
Polyhedral clathrate hydrates. IX. Structure of ethylene oxide hydrate
,”
J. Chem. Phys.
42
,
2725
2732
(
1965
).
4.
T. C. W.
Mak
and
R. K.
McMullan
, “
Polyhedral clathrate hydrates. X. Structure of the double hydrate of tetrahydrofuran and hydrogen sulfide
,”
J. Chem. Phys.
42
,
2732
2737
(
1965
).
5.
S.
Alavi
and
J. A.
Ripmeester
,
Clathrate Hydrates: Molecular Science and Characterization
(
John Wiley & Sons
,
2022
).
6.
C.
Bourry
,
J. L.
Charlou
,
J. P.
Donval
,
M.
Brunelli
,
C.
Focsa
, and
B.
Chazallon
, “
X-ray synchrotron diffraction study of natural gas hydrates from African margin
,”
Geophys. Res. Lett.
34
,
L22303
, (
2007
).
7.
H.
Lu
,
Y.
Seo
,
J.
Lee
,
I.
Moudrakovski
,
J. A.
Ripmeester
,
N. R.
Chapman
,
R. B.
Coffin
,
G.
Gardner
, and
J.
Pohlman
, “
Complex gas hydrate from the Cascadia margin
,”
Nature
445
,
303
(
2007
).
8.
E.
Dendy Sloan
, Jr.
, “
Fundamental principles and applications of natural gas hydrates
,”
Nature
426
,
353
359
(
2003
).
9.
R.
Boswell
, “
Is gas hydrate energy within reach?
,”
Science
325
,
957
958
(
2009
).
10.
H.
Lee
,
J.
Lee
,
D. Y.
Kim
,
J.
Park
,
Y.
Seo
,
H.
Zeng
,
I. L.
Moudrakovski
,
C. I.
Ratcliffe
, and
J. A.
Ripmeester
, “
Tuning clathrate hydrates for hydrogen storage
,”
Nature
434
,
743
(
2005
).
11.
A.
Martin
and
C. J.
Peters
, “
Hydrogen storage in sH clathrate hydrates: Thermodynamic model
,”
J. Phys. Chem. B
113
,
7558
(
2009
).
12.
L. J.
Florusse
,
C. J.
Peters
,
J.
Schoonman
,
K. C.
Hester
,
C. A.
Koh
,
S. F.
Dec
,
K. N.
Marsh
, and
E.
Dendy Sloan
, “
Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate
,”
Science
306
,
469
(
2004
).
13.
T. A.
Strobel
,
C. A.
Koh
, and
E.
Dendy Sloan
, “
Water cavities of sH clathrate hydrate stabilized by molecular hydrogen
,”
J. Phys. Chem. B
112
,
1885
(
2008
).
14.
T. A.
Strobel
,
E.
Dendy Sloan
, and
C. A.
Koh
, “
Raman spectroscopic studies of hydrogen clathrate hydrates
,”
J. Chem. Phys.
130
,
014506
(
2009
).
15.
Z.
Huo
,
K.
Hester
,
E.
Dendy Sloan
, and
K. T.
Miller
, “
Methane hydrate nonstoichiometry and phase diagram
,”
AIChE J.
49
,
1300
(
2003
).
16.
B. C.
Barnes
and
A. K.
Sum
, “
Advances in molecular simulations of clathrate hydrates
,”
Curr. Opin. Chem. Eng.
2
,
184
190
(
2013
).
17.
H.
Herzog
,
K.
Caldeira
, and
E.
Adams
, “
Carbon sequestration via direct injection
,” in
Encyclopedia of Ocean Sciences
, edited by
J.
Steele
,
S.
Thorpe
, and
K.
Turekian
(
Academic
,
London
,
2001
), Vol.
1
, p.
408
.
18.
P.
Englezos
,
Applications of Clathrate (Gas) Hydrates
(
John Wiley & Sons, Ltd.
,
2022
), Chap. 16, pp.
749
781
.
19.
C. D.
Ruppel
and
J. D.
Kessler
, “
The interaction of climate change and methane hydrates
,”
Rev. Geophys.
55
,
126
168
, (
2017
).
20.
H.
Dashti
,
L.
Zhehao Yew
, and
X.
Lou
, “
Recent advances in gas hydrate-based CO2 capture
,”
J. Nat. Gas Sci. Eng.
23
,
195
207
(
2015
).
21.
B. R.
Lee
,
C. A.
Koh
, and
A. K.
Sum
, “
Quantitative measurement and mechanisms for CH4 production from hydrates with the injection of liquid CO2
,”
Chem. Chem. Phys.
16
,
14922
14927
(
2014
).
22.
T.
Liu
,
P.
Wu
,
Z.
Chen
, and
Y.
Li
, “
Review on carbon dioxide replacement of natural gas hydrate: Research progress and perspectives
,”
Energy Fuels
36
,
7321
7336
(
2022
).
23.
A.
Touil
,
D.
Broseta
, and
A.
Desmedt
, “
Gas hydrate crystallization in thin glass capillaries: Roles of supercooling and wettability
,”
Langmuir
35
,
12569
12581
(
2019
).
24.
E. M.
Freer
,
M.
Sami Selim
, and
E.
Dendy Sloan
, Jr.
, “
Methane hydrate film growth kinetics
,”
Fluid Phase Equilib.
185
,
65
75
(
2001
).
25.
T.
Uchida
,
T.
Ebinuma
,
J.
Kawabata
, and
H.
Narita
, “
Microscopic observations of formation processes of clathrate-hydrate films at an interface between water and carbon dioxide
,”
J. Cryst. Growth
204
,
348
356
(
1999
).
26.
J. D.
Wells
,
W.
Chen
,
R. L.
Hartman
, and
C. A.
Koh
, “
Carbon dioxide hydrate in a microfluidic device: Phase boundary and crystallization kinetics measurements with micro-Raman spectroscopy
,”
J. Chem. Phys.
154
,
114710
(
2021
).
27.
H. D.
Nagashima
,
M.
Oshima
, and
Y.
Jin
, “
Film-growth rates of methane hydrate on ice surfaces
,”
J. Cryst. Growth
537
,
125595
(
2020
).
28.
W.
Ou
,
W.
Lu
,
K.
Qu
,
L.
Geng
, and
I.-M.
Chou
, “
In situ Raman spectroscopic investigation of flux-controlled crystal growth under high pressure: A case study of carbon dioxide hydrate growth in aqueous solution
,”
Int. J. Heat Mass Transfer
101
,
834
843
(
2016
).
29.
D.
Daniel-David
,
F.
Guerton
,
C.
Dicharry
,
J.-P.
Torré
, and
D.
Broseta
, “
Hydrate growth at the interface between water and pure or mixed CO2/CH4 gases: Influence of pressure, temperature, gas composition and water-soluble surfactants
,”
Chem. Eng. Sci.
132
,
118
127
(
2015
).
30.
P.
Warrier
,
M. N.
Khan
,
V.
Srivastava
,
C. M.
Maupin
, and
C. A.
Koh
, “
Overview: Nucleation of clathrate hydrates
,”
J. Chem. Phys.
145
,
211705
(
2016
).
31.
H.
Bian
,
L.
Ai
,
J. Y. Y.
Heng
,
G. C.
Maitland
, and
K.
Hellgardt
, “
Effects of chemical potential differences on methane hydrate formation kinetics
,”
Chem. Eng. J.
452
,
139084
(
2023
).
32.
H.
Nada
, “
Growth mechanism of a gas clathrate hydrate from a dilute aqueous gas solution: A molecular dynamics simulation of a three-phase system
,”
J. Phys. Chem. B
110
,
16526
16534
(
2006
).
33.
J.
Grabowska
,
S.
Blazquez
,
E.
Sanz
,
E. G.
Noya
,
I. M.
Zeron
,
J.
Algaba
,
J. M.
Miguez
,
F. J.
Blas
, and
C.
Vega
, “
Homogeneous nucleation rate of methane hydrate formation under experimental conditions from seeding simulations
,”
J. Chem. Phys.
158
,
114505
(
2023
).
34.
Arjun
,
T. A.
Berendsen
, and
P. G.
Bolhuis
, “
Unbiased atomistic insight in the competing nucleation mechanisms of methane hydrates
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
19305
19310
(
2019
).
35.
S. A.
Bagherzadeh
,
S.
Alavi
,
J.
Ripmeester
, and
P.
Englezos
, “
Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth
,”
J. Chem. Phys.
142
,
214701
(
2015
).
36.
A. H.
Nguyen
and
V.
Molinero
, “
Cross-nucleation between clathrate hydrate polymorphs: Assessing the role of stability, growth rate, and structure matching
,”
J. Chem. Phys.
140
,
084506
(
2014
).
37.
B. C.
Knott
,
V.
Molinero
,
M. F.
Doherty
, and
B.
Peters
, “
Homogeneous nucleation of methane hydrates: Unrealistic under realistic conditions
,”
J. Am. Chem. Soc.
134
,
19544
19547
(
2012
).
38.
M. R.
Walsh
,
C. A.
Koh
,
E. D.
Sloan
,
A. K.
Sum
, and
D. T.
Wu
, “
Microsecond simulations of spontaneous methane hydrate nucleation and growth
,”
Science
326
,
1095
1098
(
2009
).
39.
Y.
Chen
,
C.
Chen
, and
A. K.
Sum
, “
Molecular resolution into the nucleation and crystal growth of clathrate hydrates formed from methane and propane mixtures
,”
Cryst. Growth Des.
21
,
960
973
(
2021
).
40.
M. R.
Walsh
,
G. T.
Beckham
,
C. A.
Koh
,
E. D.
Sloan
,
D. T.
Wu
, and
A. K.
Sum
, “
Methane hydrate nucleation rates from molecular dynamics simulations: Effects of aqueous methane concentration, interfacial curvature, and system size
,”
J. Phys. Chem. C
115
,
21241
21248
(
2011
).
41.
S.
Sarupria
and
P. G.
Debenedetti
, “
Homogeneous nucleation of methane hydrate in microsecond molecular dynamics simulations
,”
J. Phys. Chem. Lett.
3
,
2942
2947
(
2012
).
42.
A.
Arjun
and
P. G.
Bolhuis
, “
Homogeneous nucleation of crystalline methane hydrate in molecular dynamics transition paths sampled under realistic conditions
,”
J. Chem. Phys.
158
,
044504
(
2023
).
43.
A. M.
Fernandez-Fernandez
,
M. M.
Conde
,
G.
Perez-Sanchez
,
M.
Pérez-Rodríguez
, and
M. M.
Pineiro
, “
Molecular simulation of methane hydrate growth confined into a silica pore
,”
J. Mol. Liq.
362
,
119698
(
2022
).
44.
J. R.
Espinosa
,
C.
Navarro
,
E.
Sanz
,
C.
Valeriani
, and
C.
Vega
, “
On the time required to freeze water
,”
J. Chem. Phys.
145
,
211922
(
2016
).
45.
P.
Montero de Hijes
,
J.
Espinosa
,
C.
Vega
, and
E.
Sanz
, “
Ice growth rate: Temperature dependence and effect of heat dissipation
,”
J. Chem. Phys.
151
,
044509
(
2019
).
46.
M. M.
Conde
and
C.
Vega
, “
Determining the three-phase coexistence line in methane hydrates using computer simulations
,”
J. Chem. Phys.
133
,
064507
(
2010
).
47.
J. M.
Miguez
,
M. M.
Conde
,
J. P.
Torre
,
F. J.
Blas
,
M. M.
Pineiro
, and
C.
Vega
, “
Molecular dynamics simulation of CO2 hydrates: Prediction of three phase coexistence line
,”
J. Chem. Phys.
142
,
124505
(
2015
).
48.
S.-L.
Li
,
C.-Y.
Sun
,
B.
Liu
,
Z.-Y.
Li
,
G.-J.
Chen
, and
A. K.
Sum
, “
New observations and insights into the morphology and growth kinetics of hydrate films
,”
Sci. Rep.
4
,
4129
(
2014
).
49.
Y.-T.
Tung
,
L.-J.
Chen
,
Y.-P.
Chen
, and
S.-T.
Lin
, “
The growth of structure I methane hydrate from molecular dynamics simulations
,”
J. Phys. Chem. B
114
,
10804
10813
(
2010
).
50.
J. L. F.
Abascal
,
E.
Sanz
,
R.
García Fernández
, and
C.
Vega
, “
A potential model for the study of ices and amorphous water: TIP4P/Ice
,”
J. Chem. Phys.
122
,
234511
(
2005
).
51.
B.
Guillot
and
Y.
Guissani
, “
A computer simulation study of the temperature dependence of the hydrophobic hydration
,”
J. Chem. Phys.
99
,
8075
8094
(
1993
).
52.
D.
Paschek
, “
Temperature dependence of the hydrophobic hydration and interaction of simple solutes: An examination of five popular water models
,”
J. Chem. Phys.
120
,
6674
6690
(
2004
).
53.
J. J.
Potoff
and
J. I.
Siepmann
, “
Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen
,”
AIChE J.
47
,
1676
1682
(
2001
).
54.
D.
van der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
, “
GROMACS: Fast, flexible, and free
,”
J. Comput. Chem.
26
,
1701
(
2005
).
55.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
, “
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
56.
D.
Beeman
, “
Some multistep methods for use in molecular dynamics calculations
,”
J. Comput. Phys.
20
,
130
139
(
1976
).
57.
S.
Nosé
, “
A molecular dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
52
,
255
268
(
1984
).
58.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
59.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
7190
(
1981
).
60.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
,
8577
8593
(
1995
).
61.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J. G. E. M.
Fraaije
, “
LINCS: A linear constraint solver for molecular simulations
,”
J. Comput. Chem.
18
,
1463
(
1997
).
62.
B.
Hess
, “
P-LINCS: A parallel linear constraint solver for molecular simulation
,”
J. Chem. Theory Comput.
4
,
116
122
(
2008
).
63.
J. R.
Espinosa
,
J. L. F.
Abascal
,
L. F.
Sedano
,
E.
Sanz
, and
C.
Vega
, “
On the possible locus of the liquid–liquid critical point in real water from studies of supercooled water using the TIP4P/Ice model
,”
J. Chem. Phys.
158
,
204505
(
2023
).
64.
D.
Turnbull
, “
Under what conditions can a glass be formed?
,”
Contemp. Phys.
10
,
473
488
(
1969
).
65.
H. R.
Pruppacher
, “
Interpretation of experimentally determined growth rates of ice crystals in supercooled water
,”
J. Chem. Phys.
47
,
1807
1813
(
1967
).
66.
J.
Algaba
,
I.
Zeron
,
J. M.
Miguez
,
J.
Grabowska
,
S.
Blazquez
,
E.
Sanz
,
C.
Vega
, and
F.
Blas
, “
Solubility of carbon dioxide in water: Some useful results for hydrate nucleation
,”
J. Chem. Phys.
158
,
184703
(
2023
).
67.
J.
Grabowska
,
S.
Blazquez
,
E.
Sanz
,
I. M.
Zerón
,
J.
Algaba
,
J. M.
Míguez
,
F. J.
Blas
, and
C.
Vega
, “
Solubility of methane in water: Some useful results for hydrate nucleation
,”
J. Phys. Chem. B
126
,
8553
8570
(
2022
).
68.
S.
Blazquez
and
C.
Vega
, “
Melting points of water models: Current situation
,”
J. Chem. Phys.
156
,
216101
(
2022
).
69.
A. M.
Fernández-Fernández
,
M.
Pérez-Rodríguez
,
A.
Comesana
, and
M. M.
Pineiro
, “
Three-phase equilibrium curve shift for methane hydrate in oceanic conditions calculated from molecular dynamics simulations
,”
J. Mol. Liq.
274
,
426
(
2019
).
70.
S.
Blazquez
,
C.
Vega
, and
M. M.
Conde
, “
Three phase equilibria of the methane hydrate in NaCl solutions: A simulation study
,”
J. Mol. Liq.
383
,
122031
(
2023
).
71.
M. M.
Conde
,
M.
Rovere
, and
P.
Gallo
, “
High precision determination of the melting points of water TIP4P/2005 and water TIP4P/Ice models by the direct coexistence technique
,”
J. Chem. Phys.
147
,
244506
(
2017
).
72.
M. M.
Conde
and
C.
Vega
, “
Note: A simple correlation to locate the three phase coexistence line in methane-hydrate simulations
,”
J. Chem. Phys.
138
,
056101
(
2013
).
73.
D.
Rozmanov
and
P. G.
Kusalik
, “
Temperature dependence of crystal growth of hexagonal ice (Ih)
,”
Phys. Chem. Chem. Phys.
13
,
15501
15511
(
2011
).
74.
D.
Rozmanov
and
P. G.
Kusalik
, “
Anisotropy in the crystal growth of hexagonal ice, Ih
,”
J. Chem. Phys.
137
,
094702
(
2012
).
75.
M. A.
Carignano
,
P. B.
Shepson
, and
I.
Szleifer
, “
Molecular dynamics simulations of ice growth from supercooled water
,”
Mol. Phys.
103
,
2957
2967
(
2005
).
You do not currently have access to this content.