Clusters are considered to become increasingly significant for elaborating the nanocrystal’s formation mechanism. However, capturing the clusters with high chemical potential is challenging because of the lack of effective strategies. In this work, the key role of ligand–solvent interaction has been revealed for the stabilization of clusters in silver telluride synthesis. The Flory interaction coefficient that comprehensively regards the temperature and dispersion, polarity, and hydrogen bonding of the solvent has been used to evaluate the ligand–solvent interaction and thus assist in the design of synthetic systems. Small silver telluride clusters have been successfully captured, and the composition of the smallest cluster is determined as Ag7Te8(SCy)2 (SCy represents the ligand). This work provides new insights into the design of cluster/nanocrystal synthesis systems and paves the way to revealing the mechanism of precursor–cluster–nanocrystal conversion.

1.
F. P.
García de Arquer
,
D. V.
Talapin
,
V. I.
Klimov
,
Y.
Arakawa
,
M.
Bayer
, and
E. H.
Sargent
, “
Semiconductor quantum dots: Technological progress and future challenges
,”
Science
373
,
eaaz8541
(
2021
).
2.
Z. G.
Wang
,
S. L.
Liu
, and
D. W.
Pang
, “
Quantum dots: A promising fluorescent label for probing virus trafficking
,”
Acc. Chem. Res.
54
,
2991
(
2021
).
3.
D.
Nguyen
,
J. J.
Goings
,
H. A.
Nguyen
,
J.
Lyding
,
X.
Li
, and
M.
Gruebele
, “
Orientation-dependent imaging of electronically excited quantum dots
,”
J. Chem. Phys.
148
,
064701
(
2018
).
4.
S. L.
Liu
,
Z. G.
Wang
,
H. Y.
Xie
,
A. A.
Liu
,
D. C.
Lamb
, and
D. W.
Pang
, “
Single-virus tracking: From imaging methodologies to virological applications
,”
Chem. Rev.
120
,
1936
(
2020
).
5.
M. J.
Greaneya
,
J.
Joya
,
B. A.
Combs
,
S.
Das
,
J. J.
Buckley
,
S. E.
Bradforthb
, and
R. L.
Brutchey
, “
Effects of interfacial ligand type on hybrid P3HT: CdSe quantum dot solar cell device parameters
,”
J. Chem. Phys.
151
,
074704
(
2019
).
6.
I.
Robinson
, “
Giant molecules or tiny crystals?
,”
Nat. Mater.
7
,
275
(
2008
).
7.
D. C.
Gary
,
M. W.
Terban
,
S. J. L.
Billinge
, and
B. M.
Cossairt
, “
Two-step nucleation and growth of InP quantum dots via magic-sized cluster intermediates
,”
Chem. Mater.
27
,
1432
(
2015
).
8.
K. A.
Nguyen
,
R.
Pachter
,
P. N.
Day
, and
H.
Su
, “
Theoretical analysis of structures and electronic spectra in molecular cadmium chalcogenide clusters
,”
J. Chem. Phys.
142
,
234305
(
2015
).
9.
M. R.
Friedfeld
,
D. A.
Johnson
, and
B. M.
Cossairt
, “
Conversion of InP clusters to quantum dots
,”
Inorg. Chem.
58
,
803
(
2019
).
10.
C.
Palencia
,
K.
Yu
, and
K.
Boldt
, “
The future of colloidal semiconductor magic-size clusters
,”
ACS Nano
14
,
1227
(
2020
).
11.
G.
Wang
,
Cluster Physics
(
Shanghai Scientific & Technical Publishers
,
2003
), p.
1
.
12.
Z. A.
Peng
and
X.
Peng
, “
Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth
,”
J. Am. Chem. Soc.
124
,
3343
(
2002
).
13.
R.
Xie
,
Z.
Li
, and
X.
Peng
, “
Nucleation kinetics vs chemical kinetics in the initial formation of semiconductor nanocrystals
,”
J. Am. Chem. Soc.
131
,
15457
(
2009
).
14.
B. M.
Cossairt
, “
Shining light on indium phosphide quantum dots: Understanding the interplay among precursor conversion, nucleation, and growth
,”
Chem. Mater.
28
,
7181
(
2016
).
15.
S.
Busatto
and
C.
de Mello Donega
, “
Magic-size semiconductor nanostructures: Where does the magic come from?
,”
ACS Mater. Au
2
,
237
(
2022
).
16.
C.
Palencia
,
R.
Seher
,
J.
Krohn
,
F.
Thiel
,
F.
Lehmkühler
, and
H.
Weller
, “
An in situ and real time study of the formation of CdSe NCs
,”
Nanoscale
12
,
22928
(
2020
).
17.
Y.
Li
,
N.
Rowell
,
C.
Luan
,
M.
Zhang
,
X.
Chen
, and
K.
Yu
, “
A two-pathway model for the evolution of colloidal compound semiconductor quantum dots and magic-size clusters
,”
Adv. Mater.
34
,
2107940
(
2022
).
18.
H.
Weatherspoon
and
B.
Peters
, “
Broken bond models, magic-sized clusters, and nucleation theory in nanoparticle synthesis
,”
J. Chem. Phys.
158
,
114306
(
2023
).
19.
W.
Baek
,
M. S.
Bootharaju
,
K. M.
Walsh
,
S.
Lee
,
D. R.
Gamelin
, and
T.
Hyeon
, “
Highly luminescent and catalytically active suprastructures of magic-sized semiconductor nanoclusters
,”
Nat. Mater.
20
,
650
(
2021
).
20.
Y.
Yang
,
Y.
Li
,
C.
Luan
,
N.
Rowell
,
S.
Wang
,
C.
Zhang
,
W.
Huang
,
X.
Chen
, and
K.
Yu
, “
Transformation pathways in colloidal CdTeSe magic-size clusters
,”
Angew. Chem., Int. Ed.
61
,
e202114551
(
2022
).
21.
C. B.
Williamson
,
D. R.
Nevers
,
A.
Nelson
,
I.
Hadar
,
U.
Banin
,
T.
Hanrath
, and
R. D.
Robinson
, “
Chemically reversible isomerization of inorganic clusters
,”
Science
363
,
731
(
2019
).
22.
M. S.
Bootharaju
,
W.
Baek
,
G.
Deng
,
K.
Singh
,
O.
Voznyy
,
N.
Zheng
, and
T.
Hyeon
, “
Structure of a subnanometer-sized semiconductor Cd14Se13 cluster
,”
Chem
8
,
2978
(
2022
).
23.
Y.
Kwon
and
S.
Kim
, “
Indium phosphide magic-sized clusters: Chemistry and applications
,”
NPG Asia Mater.
13
,
37
(
2021
).
24.
C. M.
Evans
,
A. M.
Love
, and
E. A.
Weiss
, “
Surfactant-controlled polymerization of semiconductor clusters to quantum dots through competing step-growth and living chain-growth mechanisms
,”
J. Am. Chem. Soc.
134
,
17298
(
2012
).
25.
K.
Yu
,
M. Z.
Hu
,
R.
Wang
,
M. L.
Piolet
,
M.
Frotey
,
M. B.
Zaman
,
X.
Wu
,
D. M.
Leek
,
Y.
Tao
,
D.
Wilkinson
, and
C.
Li
, “
Thermodynamic equilibrium-driven formation of single-sized nanocrystals: Reaction media tuning CdSe magic-sized versus regular quantum dots
,”
J. Phys. Chem. C
114
,
3329
(
2010
).
26.
D. C.
Gary
,
A.
Petrone
,
X.
Li
, and
B. M.
Cossairt
, “
Investigating the role of amine in InP nanocrystal synthesis: Destabilizing cluster intermediates by Z-type ligand displacement
,”
Chem. Commun.
53
,
161
(
2017
).
27.
L. L.
Chen
,
L.
Zhao
,
Z. G.
Wang
,
S. L.
Liu
, and
D. W.
Pang
, “
Near-infrared-II quantum dots for in vivo imaging and cancer therapy
,”
Small
18
,
2104567
(
2022
).
28.
M. X.
Yu
,
J. J.
Ma
,
J. M.
Wang
,
W. G.
Cai
,
Z.
Zhang
,
B.
Huang
,
M. Y.
Sun
,
Q. Y.
Cheng
,
Z. L.
Zhang
,
D. W.
Pang
, and
Z. Q.
Tian
, “
Ag2Te quantum dots as contrast agents for near-infrared fluorescence and computed tomography imaging
,”
ACS Appl. Nano Mater.
3
,
6071
(
2020
).
29.
O.
Fuhr
,
S.
Dehnen
, and
D.
Fenske
, “
Chalcogenide clusters of copper and silver from silylated chalcogenide sources
,”
Chem. Soc. Rev.
42
,
1871
(
2013
).
30.
J.
Zhao
,
D.
Adcock
,
W. T.
Pennington
, and
J. W.
Kolis
, “
Organotelluride chemistry: An unusual free organotelluride anion and the metal complex [Ag4(TeR)6]2− (R = thienyl)
,”
Inorg. Chem.
29
,
4358
(
1990
).
31.
A.
Nordheider
,
A. M. Z.
Slawin
,
J. D.
Woollins
, and
T.
Chivers
, “
A silver(I) iodide complex of a tellurophosphorane
,”
Z. Anorg. Allg. Chem.
641
,
405
(
2015
).
32.
Y. P.
Xie
,
J. L.
Jin
,
G. X.
Duan
,
X.
Lu
, and
T. C. W.
Mak
, “
High-nuclearity silver(I) chalcogenide clusters: A novel class of supramolecular assembly
,”
Coord. Chem. Rev.
331
,
54
(
2017
).
33.
J.
Ouyang
,
M. B.
Zaman
,
F. J.
Yan
,
D.
Johnston
,
G.
Li
,
X.
Wu
,
D.
Leek
,
C. I.
Ratcliffe
,
J. A.
Ripmeester
, and
K.
Yu
, “
Multiple families of magic-sized CdSe nanocrystals with strong bandgap photoluminescence via noninjection one-pot syntheses
,”
J. Phys. Chem. C
112
,
13805
(
2008
).
34.
J. T.
Siy
,
E. H.
Brauser
,
T. K.
Thompson
, and
M. H.
Bartl
, “
Synthesis of bright CdSe nanocrystals by optimization of low-temperature reaction parameters
,”
J. Mater. Chem. C
2
,
675
(
2014
).
35.
L.
Xie
,
Y.
Shen
,
D.
Franke
,
V.
Sebastián
,
M. G.
Bawendi
, and
K. F.
Jensen
, “
Characterization of indium phosphide quantum dot growth intermediates using MALDI-TOF mass spectrometry
,”
J. Am. Chem. Soc.
138
,
13469
(
2016
).
36.
S. M.
Harrell
,
J. R.
McBride
, and
S. J.
Rosenthal
, “
Synthesis of ultrasmall and magic-sized CdSe nanocrystals
,”
Chem. Mater.
25
,
1199
(
2013
).
37.
Z. Y.
Liu
,
A. A.
Liu
,
H.
Fu
,
Q. Y.
Cheng
,
M. Y.
Zhang
,
M. M.
Pan
,
L. P.
Liu
,
M. Y.
Luo
,
B.
Tang
,
W.
Zhao
,
J.
Kong
,
X.
Shao
, and
D. W.
Pang
, “
Breaking through the size control dilemma of silver chalcogenide quantum dots via trialkylphosphine-induced ripening: Leading to Ag2Te emitting from 950 to 2100 nm
,”
J. Am. Chem. Soc.
143
,
12867
(
2021
).
38.
M. Y.
Zhang
,
A. A.
Liu
,
H.
Fu
,
W.
Zhang
,
S. H.
Zhang
,
Z. Y.
Liu
,
L. H.
Jiang
,
X.
Shao
, and
D. W.
Pang
, “
Regulation of silver precursor reactivity via tertiary phosphine to synthesize near-infrared Ag2Te with photoluminescence quantum yield of up to 14.7
,”
Chem. Mater.
33
,
9524
(
2021
).
39.
J. J.
Calvin
,
A. S.
Brewer
, and
A. P.
Alivisatos
, “
The role of organic ligand shell structures in colloidal nanocrystal synthesis
,”
Nat. Synth.
1
,
127
(
2022
).
40.
V. N.
Soloviev
,
A.
Eichhöfer
,
D.
Fenske
, and
U.
Banin
, “
Size-dependent optical spectroscopy of a homologous series of CdSe cluster molecules
,”
J. Am. Chem. Soc.
123
,
2354
(
2001
).
41.
A. N.
Beecher
,
X.
Yang
,
J. H.
Palmer
,
A. L.
LaGrassa
,
P.
Juhas
,
S. J. L.
Billinge
, and
J. S.
Owen
, “
Atomic structures and gram scale synthesis of three tetrahedral quantum dots
,”
J. Am. Chem. Soc.
136
,
10645
(
2014
).
42.
M. L.
Huggins
, “
Solutions of long chain compounds
,”
J. Chem. Phys.
9
,
440
(
1941
).
43.
P. J.
Flory
, “
Thermodynamics of high polymer solutions
,”
J. Chem. Phys.
10
,
51
(
1942
).
44.
S. D.
Bergin
,
Z.
Sun
,
D.
Rickard
,
P. V.
Streich
,
J. P.
Hamilton
, and
J. N.
Coleman
, “
Multicomponent solubility parameters for single-walled carbon nanotube–solvent mixtures
,”
ACS Nano
3
,
2340
(
2009
).
45.
C.
Panayiotou
, “
Redefining solubility parameters: The partial solvation parameters
,”
Phys. Chem. Chem. Phys.
14
,
3882
(
2012
).
46.
E.
Stefanis
and
C.
Panayiotou
, “
A new expanded solubility parameter approach
,”
Int. J. Pharm.
426
,
29
(
2012
).
47.
P.
Lova
,
G.
Manfredi
,
C.
Bastianini
,
C.
Mennucci
,
F.
Buatier de Mongeot
,
A.
Servida
, and
D.
Comoretto
, “
Flory–Huggins photonic sensors for the optical assessment of molecular diffusion coefficients in polymers
,”
ACS Appl. Mater. Interfaces
11
,
16872
(
2019
).
48.
C. M.
Hansen
,
Hansen Solubility Parameters: A User’s Handbook
,
2nd ed.
(
CRC Press
,
2007
), p.
32
.
49.
W. W.
Yu
,
Y. A.
Wang
, and
X.
Peng
, “
Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals
,”
Chem. Mater.
15
,
4300
(
2003
).
50.
H.
Liu
,
J. S.
Owen
, and
A. P.
Alivisatos
, “
Mechanistic study of precursor evolution in colloidal group II–VI semiconductor nanocrystal synthesis
,”
J. Am. Chem. Soc.
129
,
305
(
2007
).
51.
K.
Yu
, “
CdSe magic-sized nuclei, magic-sized nanoclusters and regular nanocrystals: Monomer effects on nucleation and growth
,”
Adv. Mater.
24
,
1123
(
2012
).
52.
P. G.
Vekilov
, “
Nonclassical nucleation
,”
ACS Sym. Ser.
1358
,
19
(
2020
).
53.
J.
van Embden
and
P.
Mulvaney
, “
Nucleation and growth of CdSe nanocrystals in a binary ligand system
,”
Langmuir
21
,
10226
(
2005
).
54.
S.
Abe
,
R. K.
Capek
,
B.
De Geyter
, and
Z.
Hens
, “
Reaction chemistry/nanocrystal property relations in the hot injection synthesis, the role of the solute solubility
,”
ACS Nano
7
,
943
(
2013
).
55.
D. R.
Nevers
,
C. B.
Williamson
,
B. H.
Savitzky
,
I.
Hadar
,
U.
Banin
,
L. F.
Kourkoutis
,
T.
Hanrath
, and
R. D.
Robinson
, “
Mesophase formation stabilizes high-purity magic-sized clusters
,”
J. Am. Chem. Soc.
140
,
3652
(
2018
).
56.
L.
Yang
,
X.
Zhou
,
Y.
Chen
,
Y.
Qin
,
X.
Kong
,
H.
Zhu
,
C.
Pu
, and
X.
Peng
, “
Efficient quasi-stationary charge transfer from quantum dots to acceptors physically-adsorbed in the ligand monolayer
,”
Nano Res.
15
,
617
(
2022
).
57.
S.
Leekumjorn
,
S.
Gullapalli
, and
M. S.
Wong
, “
Understanding the solvent polarity effects on surfactant-capped nanoparticles
,”
J. Phys. Chem. B
116
,
13063
(
2012
).
58.
S.
Costanzo
,
G.
Simon
,
J.
Richardi
,
P.
Colomban
, and
I.
Lisiecki
, “
Solvent effects on cobalt nanocrystal synthesis—A facile strategy to control the size of Co nanocrystals
,”
J. Phys. Chem. C
120
,
22054
(
2016
).
59.
X.
Peng
,
J.
Wickham
, and
A. P.
Alivisatos
, “
Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions
,”
J. Am. Chem. Soc.
120
,
5343
(
1998
).
60.
Y.
Li
,
C.
Pu
, and
X.
Peng
, “
Surface activation of colloidal indium phosphide nanocrystals
,”
Nano Res.
10
,
941
(
2017
).

Supplementary Material

You do not currently have access to this content.