Exciplexes are excited-state complexes formed as a result of partial charge transfer from the donor to the acceptor species when one moiety of the donor–acceptor pair is electronically excited. The arene–amine exciplex formed between oligo-(p-phenylene) (OPP) and triethylamine (TEA) is of interest in the catalytic photoreduction of CO2 because it can compete with complete electron transfer to the OPP catalyst. Therefore, formation of the exciplex can hinder the generation of a radical anion OPP·− necessary for subsequent CO2 reduction. We report an implementation of a workflow automating quantum-chemistry calculations that generate and characterize an ensemble of structures to represent this exciplex state. We use FireWorks, Pymatgen, and Custodian Python packages for high-throughput ensemble generation. The workflow includes time-dependent density functional theory optimization, verification of excited-state minima, and exciplex characterization with natural transition orbitals, exciton analysis, excited-state Mulliken charges, and energy decomposition analysis. Fluorescence spectra computed for these ensembles using Boltzmann-weighted contributions of each structure agree better with experiment than our previous calculations based on a single representative exciplex structure [Kron et al., J. Phys. Chem. A 126, 2319–2329 (2022)]. The ensemble description of the exciplex state also reproduces an experimentally observed red shift of the emission spectrum of [OPP-4–TEA]* relative to [OPP-3–TEA]*. The workflow developed here streamlines otherwise labor-intensive calculations that would require significant user involvement and intervention.

1.
N. J.
Turro
,
V.
Ramamurthy
, and
J.
Scaiano
,
Modern Molecular Photochemistry of Organic Molecules
(
University Science Books
,
Mill Valley
,
1991
).
2.
T.
Förster
, “
Excimers
,”
Angew. Chem., Int. Ed.
8
,
333
343
(
1969
).
3.
S. L.
Mattes
and
S.
Farid
, “
Exciplexes and electron transfer reactions
,”
Science
226
,
917
921
(
1984
).
4.
J. B.
Birks
, “
Excimers
,”
Rep. Prog. Phys.
38
,
903
(
1975
).
5.
K.
Diri
and
A. I.
Krylov
, “
Electronic states of the benzene dimer: A simple case of complexity
,”
J. Phys. Chem. A
116
,
653
662
(
2011
).
6.
X.
Feng
,
A. V.
Luzanov
, and
A. I.
Krylov
, “
Fission of entangled spins: An electronic structure perspective
,”
J. Phys. Chem. Lett.
4
,
3845
3852
(
2013
).
7.
Principles of Fluorescence Spectroscopy
, edited by
J. R.
Lakowicz
(
Springer
,
Boston, MA
,
2006
), pp.
277
330
.
8.
D.
Setiawan
,
D.
Sethio
,
M. A.
Martoprawiro
, and
M.
Filatov
, “
Formation of bonded exciplex in the excited states of dicyanoanthracene-pyridine system: Time dependent density functional theory study
,” in
Proceedings of the 2011 2nd International Congress on Computer Applications and Computational Science
(
Springer
,
Berlin, Heidelberg
,
2012
), pp.
403
409
.
9.
Y.
Wang
,
O.
Haze
,
J. P.
Dinnocenzo
,
S.
Farid
,
R. S.
Farid
, and
I. R.
Gould
, “
Bonded exciplexes. A new concept in photochemical reactions
,”
J. Org. Chem.
72
,
6970
6981
(
2007
).
10.
D.
Casanova
, “
Theoretical investigations of the perylene electronic structure: Monomer, dimers, and excimers
,”
Int. J. Quantum Chem.
115
,
442
452
(
2015
).
11.
N. O.
Dubinets
,
A. A.
Safonov
, and
A. A.
Bagaturyants
, “
Structures and binding energies of the naphthalene dimer in its ground and excited states
,”
J. Phys. Chem. A
120
,
2779
2782
(
2016
).
12.
E. S. S.
Iyer
,
A.
Sadybekov
,
O.
Lioubashevski
,
A. I.
Krylov
, and
S.
Ruhman
, “
Rewriting the story of excimer formation in liquid benzene
,”
J. Phys. Chem. A
121
,
1962
1975
(
2017
).
13.
Y.
Gao
,
H.
Liu
,
S.
Zhang
,
Q.
Gu
,
Y.
Shen
,
Y.
Ge
, and
B.
Yang
, “
Excimer formation and evolution of excited state properties in discrete dimeric stacking of an anthracene derivative: A computational investigation
,”
Phys. Chem. Chem. Phys.
20
,
12129
12137
(
2018
).
14.
S.
Reiter
,
M. K.
Roos
, and
R.
de Vivie-Riedle
, “
Excited state conformations of bridged and unbridged pyrene excimers
,”
ChemPhotoChem
3
,
881
888
(
2019
).
15.
R. A.
Krueger
and
G.
Blanquart
, “
Exciplex stabilization in asymmetric acene dimers
,”
J. Phys. Chem. A
123
,
1796
1806
(
2019
).
16.
A. C.
Hancock
and
L.
Goerigk
, “
Noncovalently bound excited-state dimers: A perspective on current time-dependent density functional theory approaches applied to aromatic excimer models
,”
RSC Adv.
12
,
13014
13034
(
2022
).
17.
J.
Lee
,
B.
Kim
,
J. E.
Kwon
,
J.
Kim
,
D.
Yokoyama
,
K.
Suzuki
,
H.
Nishimura
,
A.
Wakamiya
,
S. Y.
Park
, and
J.
Park
, “
Excimer formation in organic emitter films associated with a molecular orientation promoted by steric hindrance
,”
Chem. Commun.
50
,
14145
14148
(
2014
).
18.
J.
Lee
,
H.
Jung
,
H.
Shin
,
J.
Kim
,
D.
Yokoyama
,
H.
Nishimura
,
A.
Wakamiya
, and
J.
Park
, “
Excimer emission based on the control of molecular structure and intermolecular interactions
,”
J. Mater. Chem. C
4
,
2784
2792
(
2016
).
19.
Y.-H.
Chen
,
K.-C.
Tang
,
Y.-T.
Chen
,
J.-Y.
Shen
,
Y.-S.
Wu
,
S.-H.
Liu
,
C.-S.
Lee
,
C.-H.
Chen
,
T.-Y.
Lai
,
S.-H.
Tung
,
R.-J.
Jeng
,
W.-Y.
Hung
,
M.
Jiao
,
C.-C.
Wu
, and
P.-T.
Chou
, “
Insight into the mechanism and outcoupling enhancement of excimer-associated white light generation
,”
Chem. Sci.
7
,
3556
3563
(
2016
).
20.
Q.
Wang
,
Q.-S.
Tian
,
Y.-L.
Zhang
,
X.
Tang
, and
L.-S.
Liao
, “
High-efficiency organic light-emitting diodes with exciplex hosts
,”
J. Mater. Chem. C
7
,
11329
11360
(
2019
).
21.
J.
Li
,
Z.
Li
,
H.
Liu
,
H.
Gong
,
J.
Zhang
, and
Q.
Guo
, “
Advances in blue exciplex–based organic light-emitting materials and devices
,”
Front. Chem.
10
,
952116
(
2022
).
22.
N. V.
Korovina
,
S.
Das
,
Z.
Nett
,
X.
Feng
,
J.
Joy
,
R.
Haiges
,
A. I.
Krylov
,
S. E.
Bradforth
, and
M. E.
Thompson
, “
Singlet Fission in a covalently linked cofacial alkynyltetracene dimer
,”
J. Am. Chem. Soc.
138
,
617
627
(
2016
).
23.
X.
Feng
and
A. I.
Krylov
, “
On couplings and excimers: Lessons from studies of singlet fission in covalently linked tetracene dimers
,”
Phys. Chem. Chem. Phys.
18
,
7751
7761
(
2016
).
24.
N. V.
Korovina
,
J.
Joy
,
X.
Feng
,
C.
Feltenberger
,
A. I.
Krylov
,
S. E.
Bradforth
, and
M. E.
Thompson
, “
Linker-dependent singlet fission in tetracene dimers
,”
J. Am. Chem. Soc.
140
,
10179
10190
(
2018
).
25.
R.
Martínez-Máñez
and
F.
Sancenón
, “
Fluorogenic and chromogenic chemosensors and reagents for anions
,”
Chem. Rev.
103
,
4419
4476
(
2003
).
26.
J.-S.
Wu
,
J.-H.
Zhou
,
P.-F.
Wang
,
X.-H.
Zhang
, and
S.-K.
Wu
, “
New fluorescent chemosensor based on exciplex signaling mechanism
,”
Org. Lett.
7
,
2133
2136
(
2005
).
27.
G.
Zhang
,
G.
Yang
,
S.
Wang
,
Q.
Chen
, and
J.
Ma
, “
A highly fluorescent anthracene-containing hybrid material exhibiting tunable blue–green emission based on the formation of an unusual ‘T-shaped’ excimer
,”
Chem. Eur. J.
13
,
3630
3635
(
2007
).
28.
B.
Valeur
and
I.
Leray
, “
Design principles of fluorescent molecular sensors for cation recognition
,”
Coord. Chem. Rev.
205
,
3
40
(
2000
).
29.
J. S.
Kim
and
D. T.
Quang
, “
Calixarene-derived fluorescent probes
,”
Chem. Rev.
107
,
3780
3799
(
2007
).
30.
Y.
Wang
,
J.
Chen
,
Y.
Chen
,
W.
Li
, and
C.
Yu
, “
Polymer-induced perylene probe excimer formation and selective sensing of DNA methyltransferase activity through the monomer–excimer transition
,”
Anal. Chem.
86
,
4371
4378
(
2014
).
31.
G.
Han
,
D.
Kim
,
Y.
Park
,
J.
Bouffard
, and
Y.
Kim
, “
Excimers beyond pyrene: A far-red optical proximity reporter and its application to the label-free detection of DNA
,”
Angew. Chem., Int. Ed.
54
,
3912
3916
(
2015
).
32.
K. J.
Kron
,
A.
Rodriguez-Katakura
,
R.
Elhessen
, and
S.
Mallikarjun Sharada
, “
Photoredox chemistry with organic catalysts: Role of computational methods
,”
ACS Omega
6
,
33253
33264
(
2021
).
33.
M.
Yamawaki
,
A.
Asano
,
T.
Furutani
,
Y.
Izumi
,
Y.
Tanaka
,
K.
Osaka
,
T.
Morita
, and
Y.
Yoshimi
, “
Photoinduced electron transfer-promoted reactions using exciplex-type organic photoredox catalyst directly linking donor and acceptor arenes
,”
Molecules
24
,
4453
(
2019
).
34.
K. J.
Kron
,
J. R.
Hunt
,
J. M.
Dawlaty
, and
S.
Mallikarjun Sharada
, “
Modeling and characterization of exciplexes in photoredox CO2 reduction: Insights from quantum chemistry and fluorescence spectroscopy
,”
J. Phys. Chem. A
126
,
2319
2329
(
2022
).
35.
A. A.
Safonov
,
A. A.
Bagaturyants
, and
V. A.
Sazhnikov
, “
Fluorescence spectra of (dibenzoylmethanato)boron difluoride exciplexes with aromatic hydrocarbons: A theoretical study
,”
J. Phys. Chem. A
119
,
8182
8187
(
2015
).
36.
R.
Huenerbein
and
S.
Grimme
, “
Time-dependent density functional study of excimers and exciplexes of organic molecules
,”
Chem. Phys.
343
,
362
371
(
2008
).
37.
D.
Kim
, “
A density functional theory study of an exciplex: Pyridine and benzene
,”
Bull. Korean Chem. Soc.
39
,
882
886
(
2018
).
38.
J.
Hoche
,
H.-C.
Schmitt
,
A.
Humeniuk
,
I.
Fischer
,
R.
Mitrić
, and
M. I. S.
Röhr
, “
The mechanism of excimer formation: An experimental and theoretical study on the pyrene dimer
,”
Phys. Chem. Chem. Phys.
19
,
25002
25015
(
2017
).
39.
L. T.
Bergendahl
and
M. J.
Paterson
, “
Excited states of porphyrin and porphycene aggregates: Computational insights
,”
Comput. Theor. Chem.
1040–1041
,
274
286
(
2014
).
40.
M. T.
do Casal
and
T. M.
Cardozo
, “
Impact of low-cost methods in the description of excimer and exciplex formation: Pyrene–pyrene and pyrene–naphthalene case studies
,”
Theor. Chem. Acc.
139
,
144
(
2020
).
41.
N.
De Mitri
,
S.
Monti
,
G.
Prampolini
, and
V.
Barone
, “
Absorption and emission spectra of a flexible dye in solution: A computational time-dependent approach
,”
J. Chem. Theory Comput.
9
,
4507
4516
(
2013
).
42.
A. V.
Luzanov
,
A. A.
Sukhorukov
, and
V. É.
Umanskii
, “
Application of transition density matrix for analysis of excited states
,”
Theor. Exp. Chem.
10
,
354
361
(
1976
) [Teor. Eksp. Khim. 10, 456 (1974) (in Russian)].
43.
M.
Head-Gordon
,
A. M.
Grana
,
D.
Maurice
, and
C. A.
White
, “
Analysis of electronic transitions as the difference of electron attachment and detachment densities
,”
J. Phys. Chem.
99
,
14261
14270
(
1995
).
44.
R. L.
Martin
, “
Natural transition orbitals
,”
J. Chem. Phys.
118
,
4775
4777
(
2003
).
45.
F.
Plasser
,
M.
Wormit
, and
A.
Dreuw
, “
New tools for the systematic analysis and visualization of electronic excitations. I. Formalism
,”
J. Chem. Phys.
141
,
024106
024113
(
2014
).
46.
F.
Plasser
,
A. I.
Krylov
, and
A.
Dreuw
, “
libwfa: Wavefunction analysis tools for excited and open-shell electronic states
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
12
,
e1595
(
2022
).
47.
A. I.
Krylov
, “
From orbitals to observables and back
,”
J. Chem. Phys.
153
,
080901
(
2020
).
48.
S. A.
Bäppler
,
F.
Plasser
,
M.
Wormit
, and
A.
Dreuw
, “
Exciton analysis of many-body wave functions: Bridging the gap between the quasiparticle and molecular orbital pictures
,”
Phys. Rev. A
90
,
052521
(
2014
).
49.
S. A.
Mewes
,
F.
Plasser
,
A.
Krylov
, and
A.
Dreuw
, “
Benchmarking excited-state calculations using exciton properties
,”
J. Chem. Theory Comput.
14
,
710
725
(
2018
).
50.
Q.
Ge
,
Y.
Mao
, and
M.
Head-Gordon
, “
Energy decomposition analysis for exciplexes using absolutely localized molecular orbitals
,”
J. Chem. Phys.
148
,
064105
(
2018
).
51.
R.
Cammi
and
J.
Tomasi
, “
Nonequilibrium solvation theory for the polarizable continuum model: A new formulation at the SCF level with application to the case of the frequency-dependent linear electric response function
,”
Int. J. Quantum Chem.
56
,
465
474
(
1995
).
52.
M.
Cossi
and
V.
Barone
, “
Separation between fast and slow polarizations in continuum solvation models
,”
J. Phys. Chem. A
104
,
10614
10622
(
2000
).
53.
Z.-Q.
You
,
J.-M.
Mewes
,
A.
Dreuw
, and
J. M.
Herbert
, “
Comparison of the Marcus and Pekar partitions in the context of non-equilibrium, polarizable-continuum solvation models
,”
J. Chem. Phys.
143
,
204104
(
2015
).
54.
J.-M.
Mewes
,
Z.-Q.
You
,
M.
Wormit
,
T.
Kriesche
,
J. M.
Herbert
, and
A.
Dreuw
, “
Experimental benchmark data and systematic evaluation of two a posteriori, polarizable-continuum corrections for vertical excitation energies in solution
,”
J. Phys. Chem. A
119
,
5446
5464
(
2015
).
55.
E.
Stendardo
,
F.
Avila Ferrer
,
F.
Santoro
, and
R.
Improta
, “
Vibrationally resolved absorption and emission spectra of dithiophene in the gas phase and in solution by first-principle quantum mechanical calculations
,”
J. Chem. Theory Comput.
8
,
4483
4493
(
2012
).
56.
C.
Adamo
and
D.
Jacquemin
, “
The calculations of excited-state properties with time-dependent density functional theory
,”
Chem. Soc. Rev.
42
,
845
856
(
2013
).
57.
F.
Santoro
and
D.
Jacquemin
, “
Going beyond the vertical approximation with time-dependent density functional theory
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
6
,
460
486
(
2016
).
58.
J.
Greiner
and
D.
Sundholm
, “
Calculation of vibrationally resolved absorption and fluorescence spectra of the rylenes
,”
Phys. Chem. Chem. Phys.
22
,
2379
2385
(
2020
).
59.
S.
Hammer
,
T.
Linderl
,
K.
Tvingstedt
,
W.
Brütting
, and
J.
Pflaum
, “
Spectroscopic analysis of vibrational coupling in multi-molecular excited states
,”
Mater. Horiz.
10
,
221
234
(
2023
).
60.
S.
Gozem
and
A. I.
Krylov
, “
The ezSpectra suite: An easy-to-use toolkit for spectroscopy modeling
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
12
,
e1546
(
2022
).
61.
S.
Di Grande
,
I.
Ciofini
,
C.
Adamo
,
M.
Pagliai
, and
G.
Cardini
, “
Absorption spectra of flexible fluorescent probes by a combined computational approach: Molecular dynamics simulations and time-dependent density functional theory
,”
J. Phys. Chem. A
126
,
8809
8817
(
2022
).
62.
S.
Matsuoka
,
T.
Kohzuki
,
C.
Pac
,
A.
Ishida
,
S.
Takamuku
,
M.
Kusaba
,
N.
Nakashima
, and
S.
Yanagida
, “
Photocatalysis of oligo(p-phenylenes): Photochemical reduction of carbon dioxide with triethylamine
,”
J. Phys. Chem.
96
,
4437
4442
(
1992
).
63.
H.
Seo
,
M. H.
Katcher
, and
T. F.
Jamison
, “
Photoredox activation of carbon dioxide for amino acid synthesis in continuous flow
,”
Nat. Chem.
9
,
453
456
(
2017
).
64.
H.
Seo
,
A.
Liu
, and
T. F.
Jamison
, “
Direct β-selective hydrocarboxylation of styrenes with CO2 enabled by continuous flow photoredox catalysis
,”
J. Am. Chem. Soc.
139
,
13969
13972
(
2017
).
65.
E.
Epifanovsky
et al, “
Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package
,”
J. Chem. Phys.
155
,
084801
(
2021
).
66.
A.
Dreuw
and
M.
Head-Gordon
, “
Single-reference ab initio methods for the calculation of excited states of large molecules
,”
Chem. Rev.
105
,
4009
4037
(
2005
).
67.
J.-D.
Chai
and
M.
Head-Gordon
, “
Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections
,”
Phys. Chem. Chem. Phys.
10
,
6615
6620
(
2008
).
68.
J.-D.
Chai
and
M.
Head-Gordon
, “
Systematic optimization of long-range corrected hybrid density functionals
,”
J. Chem. Phys.
128
,
084106
(
2008
).
69.
T. N.
Truong
and
E. V.
Stefanovich
, “
A new method for incorporating solvent effect into the classical, ab initio molecular orbital and density functional theory frameworks for arbitrary shape cavity
,”
Chem. Phys. Lett.
240
,
253
260
(
1995
).
70.
V.
Barone
and
M.
Cossi
, “
Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model
,”
J. Phys. Chem. A
102
,
1995
2001
(
1998
).
71.
M.
Cossi
,
N.
Rega
,
G.
Scalmani
, and
V.
Barone
, “
Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model
,”
J. Comput. Chem.
24
,
669
681
(
2003
).
72.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
, “
Quantum mechanical continuum solvation models
,”
Chem. Rev.
105
,
2999
3094
(
2005
).
73.
Q.
Ge
and
M.
Head-Gordon
, “
Energy decomposition analysis for excimers using absolutely localized molecular orbitals within time-dependent density functional theory and configuration interaction with single excitations
,”
J. Chem. Theory Comput.
14
,
5156
5168
(
2018
).
74.
R. Z.
Khaliullin
,
E. A.
Cobar
,
R. C.
Lochan
,
A. T.
Bell
, and
M.
Head-Gordon
, “
Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals
,”
J. Phys. Chem. A
111
,
8753
8765
(
2007
).
75.
R. M.
Richard
and
J. M.
Herbert
, “
Time-dependent density-functional description of the 1La state in polycyclic aromatic hydrocarbons: Charge-transfer character in disguise?
,”
J. Chem. Theory Comput.
7
,
1296
1306
(
2011
).
76.
I.
Mayer
, “
Using singular value decomposition for a compact presentation and improved interpretation of the CIS wave functions
,”
Chem. Phys. Lett.
437
,
284
286
(
2007
).
77.
P. R.
Surján
, “
Natural orbitals in CIS and singular-value decomposition
,”
Chem. Phys. Lett.
439
,
393
394
(
2007
).
78.
See http://iqmol.org for IQmol molecular viewer; accessed December 2022.
79.
See jmol.sourceforge.net/ for Jmol development team.
80.
R.
Improta
,
V.
Barone
,
G.
Scalmani
, and
M. J.
Frisch
, “
A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution
,”
J. Chem. Phys.
125
,
054103
(
2006
).
81.
A.
Jain
,
S. P.
Ong
,
W.
Chen
,
B.
Medasani
,
X.
Qu
,
M.
Kocher
,
M.
Brafman
,
G.
Petretto
,
G.-M.
Rignanese
,
G.
Hautier
,
D.
Gunter
, and
K. A.
Persson
, “
FireWorks: A dynamic workflow system designed for high-throughput applications
,”
Concurrency Comput.: Pract. Exper.
27
,
5037
5059
(
2015
).
82.
S. P.
Ong
,
W. D.
Richards
,
A.
Jain
,
G.
Hautier
,
M.
Kocher
,
S.
Cholia
,
D.
Gunter
,
V. L.
Chevrier
,
K. A.
Persson
, and
G.
Ceder
, “
Python materials genomics (pymatgen): A robust, open-source python library for materials analysis
,”
Comput. Mater. Sci.
68
,
314
319
(
2013
).
83.
A.
Behn
,
P. M.
Zimmerman
,
A. T.
Bell
, and
M.
Head-Gordon
, “
Efficient exploration of reaction paths via a freezing string method
,”
J. Chem. Phys.
135
,
224108
(
2011
).
84.
S.
Mallikarjun Sharada
,
P. M.
Zimmerman
,
A. T.
Bell
, and
M.
Head-Gordon
, “
Automated transition state searches without evaluating the Hessian
,”
J. Chem. Theory Comput.
8
,
5166
5174
(
2012
).
85.
X.-H.
Zhang
,
L.-Y.
Wang
,
G.-H.
Zhai
,
Z.-Y.
Wen
, and
Z.-X.
Zhang
, “
The absorption, emission spectra as well as ground and excited states calculations of some dimethine cyanine dyes
,”
J. Mol. Struct.: THEOCHEM
906
,
50
55
(
2009
).
86.
A.
Pedone
,
J.
Bloino
,
S.
Monti
,
G.
Prampolini
, and
V.
Barone
, “
Absorption and emission UV-Vis spectra of the TRITC fluorophore molecule in solution: A quantum mechanical study
,”
Phys. Chem. Chem. Phys.
12
,
1000
1006
(
2010
).
87.
V.
Barone
,
J.
Bloino
,
S.
Monti
,
A.
Pedone
, and
G.
Prampolini
, “
Fluorescence spectra of organic dyes in solution: A time dependent multilevel approach
,”
Phys. Chem. Chem. Phys.
13
,
2160
2166
(
2011
).
88.
R.
Królicki
,
W.
Jarzȩba
,
M.
Mostafavi
, and
I.
Lampre
, “
Preferential solvation of coumarin 153—The role of hydrogen bonding
,”
J. Phys. Chem. A
106
,
1708
1713
(
2002
).
89.
A. V.
Kityk
, “
Absorption and fluorescence spectra of heterocyclic isomers from long-range-corrected density functional theory in polarizable continuum approach
,”
J. Phys. Chem. A
116
,
3048
3055
(
2012
).
90.
A. V.
Marenich
,
C. J.
Cramer
, and
D. G.
Truhlar
, “
Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions
,”
J. Phys. Chem. B
113
,
6378
6396
(
2009
).
91.
A.
Eilmes
, “
Solvatochromic probe in molecular solvents: Implicit versus explicit solvent model
,”
Theor. Chem. Acc.
133
,
1538
(
2014
).
92.
L.
Martínez-Fernández
,
A. J.
Pepino
,
J.
Segarra-Martí
,
A.
Banyasz
,
M.
Garavelli
, and
R.
Improta
, “
Computing the absorption and emission spectra of 5-methylcytidine in different solvents: A test-case for different solvation models
,”
J. Chem. Theory Comput.
12
,
4430
4439
(
2016
).
93.
T.
Schwabe
,
J. M. H.
Olsen
,
K.
Sneskov
,
J.
Kongsted
, and
O.
Christiansen
, “
Solvation effects on electronic transitions: Exploring the performance of advanced solvent potentials in polarizable embedding calculations
,”
J. Chem. Theory Comput.
7
,
2209
2217
(
2011
).

Supplementary Material

You do not currently have access to this content.