Many-Body eXpansion (MBX) is a C++ library that implements many-body potential energy functions (PEFs) within the “many-body energy” (MB-nrg) formalism. MB-nrg PEFs integrate an underlying polarizable model with explicit machine-learned representations of many-body interactions to achieve chemical accuracy from the gas to the condensed phases. MBX can be employed either as a stand-alone package or as an energy/force engine that can be integrated with generic software for molecular dynamics and Monte Carlo simulations. MBX is parallelized internally using Open Multi-Processing and can utilize Message Passing Interface when available in interfaced molecular simulation software. MBX enables classical and quantum molecular simulations with MB-nrg PEFs, as well as hybrid simulations that combine conventional force fields and MB-nrg PEFs, for diverse systems ranging from small gas-phase clusters to aqueous solutions and molecular fluids to biomolecular systems and metal-organic frameworks.

1.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Elsevier
,
2001
), Vol.
1
.
2.
M.
Tuckerman
,
Statistical Mechanics: Theory and Molecular Simulation
(
Oxford University Press
,
2010
).
3.
W. F.
van Gunsteren
and
H. J. C.
Berendsen
, “
Computer simulation of molecular dynamics: Methodology, applications, and perspectives in chemistry
,”
Angew. Chem., Int. Ed.
29
,
992
1023
(
1990
).
4.
K.
Binder
,
Monte Carlo and Molecular Dynamics Simulations in Polymer Science
(
Oxford University Press
,
1995
).
5.
A.
Warshel
, “
Computer simulations of enzyme catalysis: Methods, progress, and insights
,”
Annu. Rev. Biophys. Biomol. Struct.
32
,
425
443
(
2003
).
6.
M.
Karplus
and
J.
Kuriyan
, “
Molecular dynamics and protein function
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
6679
6685
(
2005
).
7.
J. D.
Durrant
and
J. A.
McCammon
, “
Molecular dynamics simulations and drug discovery
,”
BMC Biol.
9
,
71
(
2011
).
8.
K.
Ohno
,
K.
Esfarjani
, and
Y.
Kawazoe
,
Computational Materials Science: From Ab Initio to Monte Carlo Methods
(
Springer
,
2018
).
9.
S.
Lifson
and
A.
Warshel
, “
Consistent force field for calculations of conformations, vibrational spectra, and enthalpies of cycloalkane and n-alkane molecules
,”
J. Chem. Phys.
49
,
5116
5129
(
1968
).
10.
A.
Warshel
and
S.
Lifson
, “
Consistent force field calculations. II. Crystal structures, sublimation energies, molecular and lattice vibrations, molecular conformations, and enthalpies of alkanes
,”
J. Chem. Phys.
53
,
582
594
(
1970
).
11.
A. K.
Rappé
,
C. J.
Casewit
,
K. S.
Colwell
,
W. A.
Goddard
III
, and
W. M.
Skiff
, “
UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
,”
J. Am. Chem. Soc.
114
,
10024
10035
(
1992
).
12.
T. A.
Halgren
and
W.
Damm
, “
Polarizable force fields
,”
Curr. Opin. Struct. Biol.
11
,
236
242
(
2001
).
13.
A. D.
MacKerell
, Jr.
, “
Empirical force fields for biological macromolecules: Overview and issues
,”
J. Comput. Chem.
25
,
1584
1604
(
2004
).
14.
P. S.
Nerenberg
and
T.
Head-Gordon
, “
New developments in force fields for biomolecular simulations
,”
Curr. Opin. Struct. Biol.
49
,
129
138
(
2018
).
15.
J. A.
Harrison
,
J. D.
Schall
,
S.
Maskey
,
P. T.
Mikulski
,
M. T.
Knippenberg
, and
B. H.
Morrow
, “
Review of force fields and intermolecular potentials used in atomistic computational materials research
,”
Appl. Phys. Rev.
5
,
031104
(
2018
).
16.
J.
Behler
, “
Perspective: Machine learning potentials for atomistic simulations
,”
J. Chem. Phys.
145
,
170901
(
2016
).
17.
V. L.
Deringer
,
M. A.
Caro
, and
G.
Csányi
, “
Machine learning interatomic potentials as emerging tools for materials science
,”
Adv. Mater.
31
,
1902765
(
2019
).
18.
F.
Noé
,
A.
Tkatchenko
,
K.-R.
Müller
, and
C.
Clementi
, “
Machine learning for molecular simulation
,”
Annu. Rev. Phys. Chem.
71
,
361
390
(
2020
).
19.
T.
Mueller
,
A.
Hernandez
, and
C.
Wang
, “
Machine learning for interatomic potential models
,”
J. Chem. Phys.
152
,
050902
(
2020
).
20.
T. B.
Blank
,
S. D.
Brown
,
A. W.
Calhoun
, and
D. J.
Doren
, “
Neural network models of potential energy surfaces
,”
J. Chem. Phys.
103
,
4129
4137
(
1995
).
21.
H.
Gassner
,
M.
Probst
,
A.
Lauenstein
, and
K.
Hermansson
, “
Representation of intermolecular potential functions by neural networks
,”
J. Phys. Chem. A
102
,
4596
4605
(
1998
).
22.
S.
Lorenz
,
A.
Groß
, and
M.
Scheffler
, “
Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks
,”
Chem. Phys. Lett.
395
,
210
215
(
2004
).
23.
S.
Manzhos
and
T.
Carrington
, Jr.
, “
Using neural networks to represent potential surfaces as sums of products
,”
J. Chem. Phys.
125
,
194105
(
2006
).
24.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
25.
S. A.
Ghasemi
,
A.
Hofstetter
,
S.
Saha
, and
S.
Goedecker
, “
Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network
,”
Phys. Rev. B
92
,
045131
(
2015
).
26.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
, “
ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost
,”
Chem. Sci.
8
,
3192
3203
(
2017
).
27.
K. T.
Schütt
,
H. E.
Sauceda
,
P.-J.
Kindermans
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
SchNet—A deep learning architecture for molecules and materials
,”
J. Chem. Phys.
148
,
241722
(
2018
).
28.
L.
Zhang
,
J.
Han
,
H.
Wang
,
R.
Car
, and
W.
E
, “
Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics
,”
Phys. Rev. Lett.
120
,
143001
(
2018
).
29.
O. T.
Unke
and
M.
Meuwly
, “
PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges
,”
J. Chem. Theory Comput.
15
,
3678
3693
(
2019
).
30.
S.
Batzner
,
A.
Musaelian
,
L.
Sun
,
M.
Geiger
,
J. P.
Mailoa
,
M.
Kornbluth
,
N.
Molinari
,
T. E.
Smidt
, and
B.
Kozinsky
, “
E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
,”
Nat. Commun.
13
,
2453
(
2022
).
31.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
, “
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,”
Phys. Rev. Lett.
104
,
136403
(
2010
).
32.
A. V.
Shapeev
, “
Moment tensor potentials: A class of systematically improvable interatomic potentials
,”
Multiscale Model. Simul.
14
,
1153
1173
(
2016
).
33.
A. P.
Thompson
,
L. P.
Swiler
,
C. R.
Trott
,
S. M.
Foiles
, and
G. J.
Tucker
, “
Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials
,”
J. Comput. Phys.
285
,
316
330
(
2015
).
34.
R.
Drautz
, “
Atomic cluster expansion for accurate and transferable interatomic potentials
,”
Phys. Rev. B
99
,
014104
(
2019
).
35.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
, “
Fast and accurate modeling of molecular atomization energies with machine learning
,”
Phys. Rev. Lett.
108
,
058301
(
2012
).
36.
S.
Chmiela
,
A.
Tkatchenko
,
H. E.
Sauceda
,
I.
Poltavsky
,
K. T.
Schütt
, and
K.-R.
Müller
, “
Machine learning of accurate energy-conserving molecular force fields
,”
Sci. Adv.
3
,
e1603015
(
2017
).
37.
A.
Vitek
,
M.
Stachon
,
P.
Krömer
, and
V.
Snáel
, “
Towards the modeling of atomic and molecular clusters energy by support vector regression
,” in
2013 5th International Conference on Intelligent Networking and Collaborative Systems
(
IEEE
,
2013
), pp.
121
126
.
38.
B. J.
Braams
and
J. M.
Bowman
, “
Permutationally invariant potential energy surfaces in high dimensionality
,”
Int. Rev. Phys. Chem.
28
,
577
606
(
2009
).
39.
Z.
Xie
and
J. M.
Bowman
, “
Permutationally invariant polynomial basis for molecular energy surface fitting via monomial symmetrization
,”
J. Chem. Theory Comput.
6
,
26
34
(
2010
).
40.
Y.
Wang
,
X.
Huang
,
B. C.
Shepler
,
B. J.
Braams
, and
J. M.
Bowman
, “
Flexible, ab initio potential, and dipole moment surfaces for water. I. Tests and applications for clusters up to the 22-mer
,”
J. Chem. Phys.
134
,
094509
(
2011
).
41.
Y.
Wang
and
J. M.
Bowman
, “
Ab initio potential and dipole moment surfaces for water. II. Local-monomer calculations of the infrared spectra of water clusters
,”
J. Chem. Phys.
134
,
154510
(
2011
).
42.
P.
Barragán
,
R.
Prosmiti
,
Y.
Wang
, and
J. M.
Bowman
, “
Full-dimensional (15-dimensional) ab initio analytical potential energy surface for the H7+ cluster
,”
J. Chem. Phys.
136
,
224302
(
2012
).
43.
J. S.
Mancini
and
J. M.
Bowman
, “
Communication: A new ab initio potential energy surface for HCl–H2O, diffusion Monte Carlo calculations of D0 and a delocalized zero-point wavefunction
,”
J. Chem. Phys.
138
,
121102
(
2013
).
44.
E.
Kamarchik
,
D.
Toffoli
,
O.
Christiansen
, and
J. M.
Bowman
, “
Ab initio potential energy and dipole moment surfaces of the F(H2O) complex
,”
Spectrochim. Acta, Part A
119
,
59
62
(
2014
).
45.
R.
Conte
,
P. L.
Houston
, and
J. M.
Bowman
, “
Communication: A benchmark-quality, full-dimensional ab initio potential energy surface for Ar-HOCO
,”
J. Chem. Phys.
140
,
151101
(
2014
).
46.
J. S.
Mancini
and
J. M.
Bowman
, “
A new many-body potential energy surface for HCl clusters and its application to anharmonic spectroscopy and vibration–vibration energy transfer in the HCl trimer
,”
J. Phys. Chem. A
118
,
7367
7374
(
2014
).
47.
C.
Qu
,
R.
Conte
,
P. L.
Houston
, and
J. M.
Bowman
, “
‘Plug and play’ full-dimensional ab initio potential energy and dipole moment surfaces and anharmonic vibrational analysis for CH4–H2O
,”
Phys. Chem. Chem. Phys.
17
,
8172
8181
(
2015
).
48.
R.
Conte
,
C.
Qu
, and
J. M.
Bowman
, “
Permutationally invariant fitting of many-body, non-covalent interactions with application to three-body methane–water–water
,”
J. Chem. Theory Comput.
11
,
1631
1638
(
2015
).
49.
Z.
Homayoon
,
R.
Conte
,
C.
Qu
, and
J. M.
Bowman
, “
Full-dimensional, high-level ab initio potential energy surfaces for H2(H2O) and H2(H2O)2 with application to hydrogen clathrate hydrates
,”
J. Chem. Phys.
143
,
084302
(
2015
).
50.
C.
Qu
and
J. M.
Bowman
, “
An ab initio potential energy surface for the formic acid dimer: Zero-point energy, selected anharmonic fundamental energies, and ground-state tunneling splitting calculated in relaxed 1–4-mode subspaces
,”
Phys. Chem. Chem. Phys.
18
,
24835
24840
(
2016
).
51.
Y.
Wang
,
J. M.
Bowman
, and
E.
Kamarchik
, “
Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions
,”
J. Chem. Phys.
144
,
114311
(
2016
).
52.
Q.
Yu
and
J. M.
Bowman
, “
Ab initio potential for H3O+ → H+ + H2O: A step to a many-body representation of the hydrated proton?
,”
J. Chem. Theory Comput.
12
,
5284
5292
(
2016
).
53.
Q.
Wang
and
J. M.
Bowman
, “
Two-component, ab initio potential energy surface for CO2–H2O, extension to the hydrate clathrate, CO2@(H2O)20, and VSCF/VCI vibrational analyses of both
,”
J. Chem. Phys.
147
,
161714
(
2017
).
54.
C.
Qu
,
Q.
Yu
, and
J. M.
Bowman
, “
Permutationally invariant potential energy surfaces
,”
Annu. Rev. Phys. Chem.
69
,
151
175
(
2018
).
55.
C.
Qu
and
J. M.
Bowman
, “
IR spectra of (HCOOH)2 and (DCOOH)2: Experiment, VSCF/VCI, and ab initio molecular dynamics calculations using full-dimensional potential and dipole moment surfaces
,”
J. Phys. Chem. Lett.
9
,
2604
2610
(
2018
).
56.
C.
Qu
and
J. M.
Bowman
, “
High-dimensional fitting of sparse datasets of CCSD(T) electronic energies and MP2 dipole moments, illustrated for the formic acid dimer and its complex IR spectrum
,”
J. Chem. Phys.
148
,
241713
(
2018
).
57.
C.
Qu
and
J. M.
Bowman
, “
Assessing the importance of the H2–H2O–H2O three-body interaction on the vibrational frequency shift of H2 in the sII clathrate hydrate and comparison with experiment
,”
J. Phys. Chem. A
123
,
329
335
(
2018
).
58.
A.
Nandi
,
C.
Qu
, and
J. M.
Bowman
, “
Full and fragmented permutationally invariant polynomial potential energy surfaces for trans and cis N-methyl acetamide and isomerization saddle points
,”
J. Chem. Phys.
151
,
084306
(
2019
).
59.
C.
Qu
and
J. M.
Bowman
, “
A fragmented, permutationally invariant polynomial approach for potential energy surfaces of large molecules: Application to N-methyl acetamide
,”
J. Chem. Phys.
150
,
141101
(
2019
).
60.
A.
Nandi
,
C.
Qu
, and
J. M.
Bowman
, “
Using gradients in permutationally invariant polynomial potential fitting: A demonstration for CH4 using as few as 100 configurations
,”
J. Chem. Theory Comput.
15
,
2826
2835
(
2019
).
61.
A.
Nandi
,
C.
Qu
,
P. L.
Houston
,
R.
Conte
,
Q.
Yu
, and
J. M.
Bowman
, “
A CCSD(T)-based 4-body potential for water
,”
J. Phys. Chem. Lett.
12
,
10318
10324
(
2021
).
62.
A.
Nandi
,
C.
Qu
,
P. L.
Houston
,
R.
Conte
, and
J. M.
Bowman
, “
Δ-machine learning for potential energy surfaces: A PIP approach to bring a DFT-based PES to CCSD(T) level of theory
,”
J. Chem. Phys.
154
,
051102
(
2021
).
63.
B.
Jiang
and
H.
Guo
, “
Permutation invariant polynomial neural network approach to fitting potential energy surfaces
,”
J. Chem. Phys.
139
,
054112
(
2013
).
64.
J.
Li
,
B.
Jiang
, and
H.
Guo
, “
Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom systems
,”
J. Chem. Phys.
139
,
204103
(
2013
).
65.
B.
Jiang
and
H.
Guo
, “
Permutation invariant polynomial neural network approach to fitting potential energy surfaces. III. Molecule-surface interactions
,”
J. Chem. Phys.
141
,
034109
(
2014
).
66.
C.
Xie
,
X.
Zhu
,
D. R.
Yarkony
, and
H.
Guo
, “
Permutation invariant polynomial neural network approach to fitting potential energy surfaces. IV. Coupled diabatic potential energy matrices
,”
J. Chem. Phys.
149
,
144107
(
2018
).
67.
T.
Morawietz
and
J.
Behler
, “
A density-functional theory-based neural network potential for water clusters including van der Waals corrections
,”
J. Phys. Chem. A
117
,
7356
7366
(
2013
).
68.
C.
Schran
,
J.
Behler
, and
D.
Marx
, “
Automated fitting of neural network potentials at coupled cluster accuracy: Protonated water clusters as testing ground
,”
J. Chem. Theory Comput.
16
,
88
99
(
2019
).
69.
D.
Rosenberger
,
J. S.
Smith
, and
A. E.
Garcia
, “
Modeling of peptides with classical and novel machine learning force fields: A comparison
,”
J. Phys. Chem. B
125
,
3598
3612
(
2021
).
70.
S.
Yue
,
M. C.
Muniz
,
M. F.
Calegari Andrade
,
L.
Zhang
,
R.
Car
, and
A. Z.
Panagiotopoulos
, “
When do short-range atomistic machine-learning models fall short?
,”
J. Chem. Phys.
154
,
034111
(
2021
).
71.
Y.
Zhai
,
A.
Caruso
,
S. L.
Bore
,
Z.
Luo
, and
F.
Paesani
, “
A ‘short blanket’ dilemma for a state-of-the-art neural network potential for water: Reproducing experimental properties or the physics of the underlying many-body interactions?
,”
J. Chem. Phys.
158
,
084111
(
2023
).
72.
V.
Babin
,
C.
Leforestier
, and
F.
Paesani
, “
Development of a ‘first principles’ water potential with flexible monomers: Dimer potential energy surface, VRT spectrum, and second virial coefficient
,”
J. Chem. Theory Comput.
9
,
5395
5403
(
2013
).
73.
V.
Babin
,
G. R.
Medders
, and
F.
Paesani
, “
Development of a ‘first principles’ water potential with flexible monomers. II: Trimer potential energy surface, third virial coefficient, and small clusters
,”
J. Chem. Theory Comput.
10
,
1599
1607
(
2014
).
74.
G. R.
Medders
,
V.
Babin
, and
F.
Paesani
, “
Development of a ‘first-principles’ water potential with flexible monomers. III. Liquid phase properties
,”
J. Chem. Theory Comput.
10
,
2906
2910
(
2014
).
75.
B. B.
Bizzarro
,
C. K.
Egan
, and
F.
Paesani
, “
Nature of halide–water interactions: Insights from many-body representations and density functional theory
,”
J. Chem. Theory Comput.
15
,
2983
2995
(
2019
).
76.
C. K.
Egan
,
B. B.
Bizzarro
,
M.
Riera
, and
F.
Paesani
, “
Nature of alkali ion–water interactions: Insights from many-body representations and density functional theory. II
,”
J. Chem. Theory Comput.
16
,
3055
3072
(
2020
).
77.
F.
Paesani
, “
Water: Many-body potential from first principles (from the gas to the liquid phase)
,” in
Handbook of Materials Modeling: Methods: Theory and Modeling
(
Springer
,
2020
), pp.
635
660
.
78.
J.
Rezac
and
P.
Hobza
, “
Benchmark calculations of interaction energies in noncovalent complexes and their applications
,”
Chem. Rev.
116
,
5038
5071
(
2016
).
79.
S. K.
Reddy
,
S. C.
Straight
,
P.
Bajaj
,
C.
Huy Pham
,
M.
Riera
,
D. R.
Moberg
,
M. A.
Morales
,
C.
Knight
,
A. W.
Götz
, and
F.
Paesani
, “
On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice
,”
J. Chem. Phys.
145
,
194504
(
2016
).
80.
F.
Paesani
, “
Getting the right answers for the right reasons: Toward predictive molecular simulations of water with many-body potential energy functions
,”
Acc. Chem. Res.
49
,
1844
1851
(
2016
).
81.
J. O.
Richardson
,
C.
Pérez
,
S.
Lobsiger
,
A. A.
Reid
,
B.
Temelso
,
G. C.
Shields
,
Z.
Kisiel
,
D. J.
Wales
,
B. H.
Pate
, and
S. C.
Althorpe
, “
Concerted hydrogen-bond breaking by quantum tunneling in the water hexamer prism
,”
Science
351
,
1310
1313
(
2016
).
82.
W. T.
Cole
,
J. D.
Farrell
,
D. J.
Wales
, and
R. J.
Saykally
, “
Structure and torsional dynamics of the water octamer from THz laser spectroscopy near 215 μm
,”
Science
352
,
1194
1197
(
2016
).
83.
J. D.
Mallory
and
V. A.
Mandelshtam
, “
Diffusion Monte Carlo studies of MB-pol (H2O)2–6 and (D2O)2–6 clusters: Structures and binding energies
,”
J. Chem. Phys.
145
,
064308
(
2016
).
84.
P. E.
Videla
,
P. J.
Rossky
, and
D.
Laria
, “
Communication: Isotopic effects on tunneling motions in the water trimer
,”
J. Chem. Phys.
144
,
061101
(
2016
).
85.
S. E.
Brown
,
A. W.
Götz
,
X.
Cheng
,
R. P.
Steele
,
V. A.
Mandelshtam
, and
F.
Paesani
, “
Monitoring water clusters ‘melt’ through vibrational spectroscopy
,”
J. Am. Chem. Soc.
139
,
7082
7088
(
2017
).
86.
C. L.
Vaillant
and
M. T.
Cvitaš
, “
Rotation-tunneling spectrum of the water dimer from instanton theory
,”
Phys. Chem. Chem. Phys.
20
,
26809
26813
(
2018
).
87.
C.
Vaillant
,
D.
Wales
, and
S.
Althorpe
, “
Tunneling splittings from path-integral molecular dynamics using a Langevin thermostat
,”
J. Chem. Phys.
148
,
234102
(
2018
).
88.
M.
Schmidt
and
P.-N.
Roy
, “
Path integral molecular dynamic simulation of flexible molecular systems in their ground state: Application to the water dimer
,”
J. Chem. Phys.
148
,
124116
(
2018
).
89.
K. P.
Bishop
and
P.-N.
Roy
, “
Quantum mechanical free energy profiles with post-quantization restraints: Binding free energy of the water dimer over a broad range of temperatures
,”
J. Chem. Phys.
148
,
102303
(
2018
).
90.
P. E.
Videla
,
P. J.
Rossky
, and
D.
Laria
, “
Isotopic equilibria in aqueous clusters at low temperatures: Insights from the MB-pol many-body potential
,”
J. Chem. Phys.
148
,
084303
(
2018
).
91.
N. R.
Samala
and
N.
Agmon
, “
Temperature dependence of intramolecular vibrational bands in small water clusters
,”
J. Phys. Chem. B
123
,
9428
9442
(
2019
).
92.
M. T.
Cvitaš
and
J. O.
Richardson
, “
Quantum tunnelling pathways of the water pentamer
,”
Phys. Chem. Chem. Phys.
22
,
1035
1044
(
2020
).
93.
G. R.
Medders
and
F.
Paesani
, “
Infrared and Raman spectroscopy of liquid water through ‘first-principles’ many-body molecular dynamics
,”
J. Chem. Theory Comput.
11
,
1145
1154
(
2015
).
94.
S. C.
Straight
and
F.
Paesani
, “
Exploring electrostatic effects on the hydrogen bond network of liquid water through many-body molecular dynamics
,”
J. Phys. Chem. B
120
,
8539
8546
(
2016
).
95.
S. K.
Reddy
,
D. R.
Moberg
,
S. C.
Straight
, and
F.
Paesani
, “
Temperature-dependent vibrational spectra and structure of liquid water from classical and quantum simulations with the MB-pol potential energy function
,”
J. Chem. Phys.
147
,
244504
(
2017
).
96.
K. M.
Hunter
,
F. A.
Shakib
, and
F.
Paesani
, “
Disentangling coupling effects in the infrared spectra of liquid water
,”
J. Phys. Chem. B
122
,
10754
10761
(
2018
).
97.
Z.
Sun
,
L.
Zheng
,
M.
Chen
,
M. L.
Klein
,
F.
Paesani
, and
X.
Wu
, “
Electron-hole theory of the effect of quantum nuclei on the X-ray absorption spectra of liquid water
,”
Phys. Rev. Lett.
121
,
137401
(
2018
).
98.
A. P.
Gaiduk
,
T. A.
Pham
,
M.
Govoni
,
F.
Paesani
, and
G.
Galli
, “
Electron affinity of liquid water
,”
Nat. Commun.
9
,
247
(
2018
).
99.
V.
Cruzeiro
,
A.
Wildman
,
X.
Li
, and
F.
Paesani
, “
Relationship between hydrogen-bonding motifs and the 1b1 splitting in the X-ray emission spectrum of liquid water
,”
J. Phys. Chem. Lett.
12
,
3996
4002
(
2021
).
100.
G. R.
Medders
and
F.
Paesani
, “
Dissecting the molecular structure of the air/water interface from quantum simulations of the sum-frequency generation spectrum
,”
J. Am. Chem. Soc.
138
,
3912
3919
(
2016
).
101.
D. R.
Moberg
,
S. C.
Straight
, and
F.
Paesani
, “
Temperature dependence of the air/water interface revealed by polarization sensitive sum-frequency generation spectroscopy
,”
J. Phys. Chem. B
122
,
4356
4365
(
2018
).
102.
S.
Sun
,
F.
Tang
,
S.
Imoto
,
D. R.
Moberg
,
T.
Ohto
,
F.
Paesani
,
M.
Bonn
,
E. H.
Backus
, and
Y.
Nagata
, “
Orientational distribution of free O–H groups of interfacial water is exponential
,”
Phys. Rev. Lett.
121
,
246101
(
2018
).
103.
S.
Sengupta
,
D. R.
Moberg
,
F.
Paesani
, and
E.
Tyrode
, “
Neat water–vapor interface: Proton continuum and the nonresonant background
,”
J. Phys. Chem. Lett.
9
,
6744
6749
(
2018
).
104.
M. C.
Muniz
,
T. E.
Gartner
III
,
M.
Riera
,
C.
Knight
,
S.
Yue
,
F.
Paesani
, and
A. Z.
Panagiotopoulos
, “
Vapor-liquid equilibrium of water with the MB-pol many-body potential
,”
J. Chem. Phys.
154
,
211103
(
2021
).
105.
C. H.
Pham
,
S. K.
Reddy
,
K.
Chen
,
C.
Knight
, and
F.
Paesani
, “
Many-body interactions in ice
,”
J. Chem. Theory Comput.
13
,
1778
1784
(
2017
).
106.
D. R.
Moberg
,
S. C.
Straight
,
C.
Knight
, and
F.
Paesani
, “
Molecular origin of the vibrational structure of ice Ih
,”
J. Phys. Chem. Lett.
8
,
2579
2583
(
2017
).
107.
D. R.
Moberg
,
P. J.
Sharp
, and
F.
Paesani
, “
Molecular-level interpretation of vibrational spectra of ordered ice phases
,”
J. Phys. Chem. B
122
,
10572
10581
(
2018
).
108.
D. R.
Moberg
,
D.
Becker
,
C. W.
Dierking
,
F.
Zurheide
,
B.
Bandow
,
U.
Buck
,
A.
Hudait
,
V.
Molinero
,
F.
Paesani
, and
T.
Zeuch
, “
The end of ice I
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
24413
24419
(
2019
).
109.
L.
del Rosso
,
M.
Celli
,
D.
Colognesi
,
S.
Rudic
,
N. J.
English
, and
L.
Ulivi
, “
Density of phonon states in cubic ice Ic
,”
J. Phys. Chem. C
125
,
23533
23538
(
2021
).
110.
S.
Rasti
,
E. Ö.
Jónsson
,
H.
Jónsson
, and
J.
Meyer
, “
New insights into the volume isotope effect of ice Ih from polarizable many-body potentials
,”
J. Phys. Chem. Lett.
13
,
11831
11836
(
2022
).
111.
S. L.
Bore
and
F.
Paesani
, “
Realistic phase diagram of water from ‘first principles’ data-driven quantum simulations
,”
Nat. Commun.
14
,
3349
(
2023
).
112.
X.
Zhu
,
M.
Riera
,
E. F.
Bull-Vulpe
, and
F.
Paesani
, “
MB-pol(2023): Sub-chemical accuracy for water simulations from the gas to the liquid phase
,”
J. Chem. Theory Comput.
19
,
3551
3566
(
2023
).
113.
P.
Bajaj
,
A. W.
Götz
, and
F.
Paesani
, “
Toward chemical accuracy in the description of ion–water interactions through many-body representations. I. Halide–water dimer potential energy surfaces
,”
J. Chem. Theory Comput.
12
,
2698
2705
(
2016
).
114.
P.
Bajaj
,
X.-G.
Wang
,
T.
Carrington
, Jr.
, and
F.
Paesani
, “
Vibrational spectra of halide–water dimers: Insights on ion hydration from full-dimensional quantum calculations on many-body potential energy surfaces
,”
J. Chem. Phys.
148
,
102321
(
2018
).
115.
P.
Bajaj
,
J. O.
Richardson
, and
F.
Paesani
, “
Ion-mediated hydrogen-bond rearrangement through tunnelling in the iodide–dihydrate complex
,”
Nat. Chem.
11
,
367
(
2019
).
116.
P.
Bajaj
,
D.
Zhuang
, and
F.
Paesani
, “
Specific ion effects on hydrogen-bond rearrangements in the halide–dihydrate complexes
,”
J. Phys. Chem. Lett.
10
,
2823
2828
(
2019
).
117.
P.
Bajaj
,
M.
Riera
,
J. K.
Lin
,
Y. E.
Mendoza Montijo
,
J.
Gazca
, and
F.
Paesani
, “
Halide ion microhydration: Structure, energetics, and spectroscopy of small halide–water clusters
,”
J. Phys. Chem. A
123
,
2843
2852
(
2019
).
118.
A.
Caruso
and
F.
Paesani
, “
Data-driven many-body models enable a quantitative description of chloride hydration from clusters to bulk
,”
J. Chem. Phys.
155
,
064502
(
2021
).
119.
A.
Caruso
,
X.
Zhu
,
J. L.
Fulton
, and
F.
Paesani
, “
Accurate modeling of bromide and iodide hydration with data-driven many-body potentials
,”
J. Phys. Chem. B
126
,
8266
8278
(
2022
).
120.
M.
Riera
,
N.
Mardirossian
,
P.
Bajaj
,
A. W.
Götz
, and
F.
Paesani
, “
Toward chemical accuracy in the description of ion–water interactions through many-body representations. Alkali-water dimer potential energy surfaces
,”
J. Chem. Phys.
147
,
161715
(
2017
).
121.
M.
Riera
,
S. E.
Brown
, and
F.
Paesani
, “
Isomeric equilibria, nuclear quantum effects, and vibrational spectra of M+(H2o)n=1–3 clusters, with M = Li, Na, K, Rb, and Cs, through many-body representations
,”
J. Phys. Chem. A
122
,
5811
5821
(
2018
).
122.
D.
Zhuang
,
M.
Riera
,
G. K.
Schenter
,
J. L.
Fulton
, and
F.
Paesani
, “
Many-body effects determine the local hydration structure of Cs+ in solution
,”
J. Phys. Chem. Lett.
10
,
406
412
(
2019
).
123.
M.
Riera
,
J. J.
Talbot
,
R. P.
Steele
, and
F.
Paesani
, “
Infrared signatures of isomer selectivity and symmetry breaking in the Cs+(H2O)3 complex using many-body potential energy functions
,”
J. Chem. Phys.
153
,
044306
(
2020
).
124.
D.
Zhuang
,
M.
Riera
,
R.
Zhou
,
A.
Deary
, and
F.
Paesani
, “
Hydration structure of Na+ and K+ ions in solution predicted by data-driven many-body potentials
,”
J. Phys. Chem. B
126
,
9349
9360
(
2022
).
125.
M.
Riera
,
E. P.
Yeh
, and
F.
Paesani
, “
Data-driven many-body models for molecular fluids: CO2/H2O mixtures as a case study
,”
J. Chem. Theory Comput.
16
,
2246
2257
(
2020
).
126.
M.
Riera
,
A.
Hirales
,
R.
Ghosh
, and
F.
Paesani
, “
Data-driven many-body models with chemical accuracy for CH4/H2O mixtures
,”
J. Chem. Phys. B
124
,
11207
11221
(
2020
).
127.
S.
Yue
,
M.
Riera
,
R.
Ghosh
,
A. Z.
Panagiotopoulos
, and
F.
Paesani
, “
Transferability of data-driven, many-body models for CO2 simulations in the vapor and liquid phases
,”
J. Chem. Phys.
156
,
104503
(
2022
).
128.
V. N.
Robinson
,
R.
Ghosh
,
C. K.
Egan
,
M.
Riera
,
C.
Knight
,
F.
Paesani
, and
A.
Hassanali
, “
The behavior of methane–water mixtures under elevated pressures from simulations using many-body potentials
,”
J. Chem. Phys.
156
,
194504
(
2022
).
129.
V. W. D.
Cruzeiro
,
E.
Lambros
,
M.
Riera
,
R.
Roy
,
F.
Paesani
, and
A. W.
Gotz
, “
Highly accurate many-body potentials for simulations of N2O5 in water: Benchmarks, development, and validation
,”
J. Chem. Theory Comput.
17
,
3931
3945
(
2021
).
130.
R.
Zhou
,
M.
Riera
, and
F.
Paesani
, “
Towards data-driven many-body simulations of biomolecules in solution: N-methyl acetamide as a proxy for the protein backbone
,”
J. Chem. Theory Comput.
19
,
4308
4321
(
2023
).
131.
E. F.
Bull-Vulpe
,
M.
Riera
,
S. L.
Bore
, and
F.
Paesani
, “
Data-driven many-body potential energy functions for generic molecules: Linear alkanes as a proof-of-concept application
,”
J. Chem. Theory Comput.
19
(
14
),
4494
4509
(
2023
).
132.
MBX: An energy and force calculator for data-driven many-body potential energy functions, http://paesanigroup.ucsd.edu/software/mbx.html,
2019
.
133.
E. F.
Bull-Vulpe
,
M.
Riera
,
A. W.
Götz
, and
F.
Paesani
, “
MB-Fit: Software infrastructure for data-driven many-body potential energy functions
,”
J. Chem. Phys.
155
,
124801
(
2021
).
134.
MB-Fit: Software infrastructure for data-driven many-body potential energy functions, https://github.com/paesanilab/MB-Fit,
2021
.
135.
R. K.
Nesbet
, “
Atomic Bethe-Goldstone equations
,” in
Advances in Chemical Physics
(
John Wiley & Sons, Ltd
,
1969
), pp.
1
34
.
136.
D.
Hankins
,
J. W.
Moskowitz
, and
F. H.
Stillinger
, “
Water molecule interactions
,”
J. Chem. Phys.
53
,
4544
4554
(
1970
).
137.
H.
Stoll
, “
Correlation energy of diamond
,”
Phys. Rev. B
46
,
6700
(
1992
).
138.
H.
Stoll
, “
On the correlation energy of graphite
,”
J. Chem. Phys.
97
,
8449
8454
(
1992
).
139.
H.
Stoll
, “
The correlation energy of crystalline silicon
,”
Chem. Phys. Lett.
191
,
548
552
(
1992
).
140.
A. J.
Stone
,
The Theory of Intermolecular Forces
(
Oxford University Press
,
Oxford
,
2013
).
141.
K. T.
Tang
and
J. P.
Toennies
, “
An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients
,”
J. Chem. Phys.
80
,
3726
3741
(
1984
).
142.
A. D.
Becke
and
E. R.
Johnson
, “
Exchange-hole dipole moment and the dispersion interaction
,”
J. Chem. Phys.
122
,
154104
(
2005
).
143.
E. R.
Johnson
and
A. D.
Becke
, “
A post-Hartree–Fock model of intermolecular interactions
,”
J. Chem. Phys.
123
,
024101
(
2005
).
144.
E. R.
Johnson
and
A. D.
Becke
, “
A post-Hartree-Fock model of intermolecular interactions: Inclusion of higher-order corrections
,”
J. Chem. Phys.
124
,
174104
(
2006
).
145.
B. T.
Thole
, “
Molecular polarizabilities calculated with a modified dipole interaction
,”
Chem. Phys.
59
,
341
350
(
1981
).
146.
C. J.
Burnham
,
D. J.
Anick
,
P. K.
Mankoo
, and
G. F.
Reiter
, “
The vibrational proton potential in bulk liquid water and ice
,”
J. Chem. Phys.
128
,
154519
(
2008
).
147.
J.
Sala
,
E.
Guardia
, and
M.
Masia
, “
The polarizable point dipoles method with electrostatic damping: Implementation on a model system
,”
J. Chem. Phys.
133
,
234101
(
2010
).
148.
J. L.
Blanco
and
P. K.
Rai
, Nanoflann: A C++ header-only fork of FLANN, a library for nearest neighbor (NN) with KD-trees, https://github.com/jlblancoc/nanoflann,
2014
.
149.
A. C.
Simmonett
and
B. R.
Brooks
, “
Analytical Hessians for Ewald and particle mesh Ewald electrostatics
,”
J. Chem. Phys.
154
,
104101
(
2021
).
150.
A. C.
Simmonett
and
B. R.
Brooks
, “
A compression strategy for particle mesh Ewald theory
,”
J. Chem. Phys.
154
,
054112
(
2021
).
151.
J.
Kolafa
, “
Time-reversible always stable predictor–corrector method for molecular dynamics of polarizable molecules
,”
J. Comput. Chem.
25
,
335
342
(
2004
).
152.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in’t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
, and
S. J.
Plimpton
, “
LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
153.
V.
Kapil
,
M.
Rossi
,
O.
Marsalek
,
R.
Petraglia
,
Y.
Litman
,
T.
Spura
,
B.
Cheng
,
A.
Cuzzocrea
,
R. H.
Meißner
,
D. M.
Wilkins
,
B. A.
Helfrecht
,
P.
Juda
,
S. P.
Bienvenue
,
W.
Fang
,
J.
Kessler
,
I.
Poltavsky
,
S.
Vandenbrande
,
J.
Wieme
,
C.
Corminboeuf
,
T. D.
Kühne
,
D. E.
Manolopoulos
,
T. E.
Markland
,
J. O.
Richardson
,
A.
Tkatchenko
,
G. A.
Tribello
,
V.
Van Speybroeck
, and
M.
Ceriotti
, “
i-PI 2.0: A universal force engine for advanced molecular simulations
,”
Comput. Phys. Commun.
236
,
214
223
(
2019
).
154.
W. D.
Cornell
,
P.
Cieplak
,
C. I.
Bayly
,
I. R.
Gould
,
K. M.
Merz
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
, “
A second generation force field for the simulation of proteins, nucleic acids, and organic molecules
,”
J. Am. Chem. Soc.
117
,
5179
5197
(
1995
).
155.
B. R.
Brooks
,
R. E.
Bruccoleri
,
B. D.
Olafson
,
D. J.
States
,
S.
Swaminathan
, and
M.
Karplus
, “
CHARMM: A program for macromolecular energy, minimization, and dynamics calculations
,”
J. Comput. Chem.
4
,
187
217
(
1983
).
156.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
, “
Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids
,”
J. Am. Chem. Soc.
118
,
11225
11236
(
1996
).

Supplementary Material

You do not currently have access to this content.