Thixotropic yield-stress fluids (TYSFs) are a unique class of materials whose properties are affected by both shear rate and shear history. When sheared, these materials undergo a transition from an elastic solid to a viscoelastic fluid, which is accompanied by a structural transition that slowly recovers upon the cessation of shear. The strong interdependence between structure, dynamics, and rheological properties in TYSFs make it challenging to identify the fundamental physics controlling these phenomena. In this study, we vary the ionic strength of a suspension of cellulose nanocrystals (CNC) to generate model TYSFs with tunable moduli and thixotropic kinetics. We use a novel rheological protocol—serial creep divergence—to identify the physics underlying the yield transition and recovery of CNC gels. Our protocol identifies a critical transition that bifurcates the solid-like and fluid-like regimes of the gels to precisely determine the yield stress of these materials even in the presence of thixotropic effects. Additionally, the thixotropic kinetics collapse onto a single master curve, which we fit to a transient solution to a coupled diffusion–aggregation model. Our work thereby identifies the underlying physicochemical mechanisms driving yielding and thixotropic recovery in attractive colloidal gels.

1.
A. Z.
Nelson
,
K. S.
Schweizer
,
B. M.
Rauzan
,
R. G.
Nuzzo
,
J.
Vermant
, and
R. H.
Ewoldt
, “
Designing and transforming yield-stress fluids
,”
Curr. Opin. Solid State Mater. Sci.
23
,
100758
(
2019
).
2.
Q.
Wang
,
L.
Wang
,
M. S.
Detamore
, and
C.
Berkland
, “
Biodegradable colloidal gels as moldable tissue engineering scaffolds
,”
Adv. Mater.
20
,
236
239
(
2008
).
3.
Y. R.
Mezzenga
and
R.
Mezzenga
, “
Design principles of food gels
,”
Nat. Food
1
,
106
118
(
2020
).
4.
D.
Miranda-Nieves
and
E. L.
Chaikof
, “
Collagen and elastin biomaterials for the fabrication of engineered living tissues
,”
ACS Biomater. Sci. Eng.
3
,
694
711
(
2017
).
5.
M. E.
Del Gado
and
E.
Del Gado
, “
Mechanics of soft gels: Linear and nonlinear response
,” in
Handbook of Materials Modeling: Applications: Current and Emerging Materials
(
Springer
,
2020
), pp.
1719
1746
.
6.
E. C.
Bingham
,
Fluidity and Plasticity
(
McGraw-Hill
,
1922
), Vol.
2
.
7.
W. H.
Herschel
and
R.
Bulkley
, “
Konsistenzmessungen von Gummi-Benzollösungen
,”
Kolloid-Zeitschrift
39
,
291
300
(
1926
).
8.
T.
Mason
,
J.
Bibette
, and
D.
Weitz
, “
Yielding and flow of monodisperse emulsions
,”
J. Colloid Interface Sci.
179
,
439
448
(
1996
).
9.
C.
Kugge
,
N.
Vanderhoek
, and
D.
Bousfield
, “
Oscillatory shear response of moisture barrier coatings containing clay of different shape factor
,”
J. Colloid Interface Sci.
358
,
25
31
(
2011
).
10.
H. A.
Barnes
, “
The yield stress—A review or ‘παντα ρɛι’—everything flows?
,”
J. Non-Newtonian Fluid Mech.
81
,
133
178
(
1999
).
11.
L.
Heymann
,
S.
Peukert
, and
N.
Aksel
, “
On the solid-liquid transition of concentrated suspensions in transient shear flow
,”
Rheol. Acta
41
,
307
315
(
2002
).
12.
A.
Ragouilliaux
,
G.
Ovarlez
,
N.
Shahidzadeh-Bonn
,
B.
Herzhaft
,
T.
Palermo
, and
P.
Coussot
, “
Transition from a simple yield-stress fluid to a thixotropic material
,”
Phys. Rev. E
76
,
051408
(
2007
).
13.
B.
Rajaram
and
A.
Mohraz
, “
Microstructural response of dilute colloidal gels to nonlinear shear deformation
,”
Soft Matter
6
,
2246
2259
(
2010
).
14.
K.
Masschaele
,
J.
Fransaer
, and
J.
Vermant
, “
Direct visualization of yielding in model two-dimensional colloidal gels subjected to shear flow
,”
J. Rheol.
53
,
1437
1460
(
2009
).
15.
C.
Perge
,
N.
Taberlet
,
T.
Gibaud
, and
S.
Manneville
, “
Time dependence in large amplitude oscillatory shear: A rheo-ultrasonic study of fatigue dynamics in a colloidal gel
,”
J. Rheol.
58
,
1331
1357
(
2014
).
16.
M.
Dinkgreve
,
J.
Paredes
,
M. M.
Denn
, and
D.
Bonn
, “
On different ways of measuring “the” yield stress
,”
J. Non-Newtonian Fluid Mech.
238
,
233
241
(
2016
).
17.
H. A.
Barnes
and
Q. D.
Nguyen
, “
Rotating vane rheometry—A review
,”
J. Non-Newtonian Fluid Mech.
98
,
1
14
(
2001
).
18.
A.
James
,
D.
Williams
, and
P.
Williams
, “
Direct measurement of static yield properties of cohesive suspensions
,”
Rheol. Acta
26
,
437
446
(
1987
).
19.
D.
Bonn
,
M. M.
Denn
,
L.
Berthier
,
T.
Divoux
, and
S.
Manneville
, “
Yield stress materials in soft condensed matter
,”
Rev. Mod. Phys.
89
,
035005
(
2017
).
20.
P. C.
Møller
,
J.
Mewis
, and
D.
Bonn
, “
Yield stress and thixotropy: On the difficulty of measuring yield stresses in practice
,”
Soft Matter
2
,
274
283
(
2006
).
21.
H. A.
Barnes
, “
Thixotropy—A review
,”
J. Non-Newtonian Fluid Mech.
70
,
1
33
(
1997
).
22.
R. G.
Larson
and
Y.
Wei
, “
A review of thixotropy and its rheological modeling
,”
J. Rheol.
63
,
477
501
(
2019
).
23.
L.-C.
Yang
,
Z.-Q.
Rong
,
Y.-N.
Wang
,
Z. Y.
Tan
,
M.
Wang
, and
Y.
Zhao
, “
Construction of nine-membered heterocycles through palladium-catalyzed formal [5+ 4] cycloaddition
,”
Angew. Chem., Int. Ed.
56
,
2927
2931
(
2017
).
24.
M.
Rinaldin
,
R. W.
Verweij
,
I.
Chakraborty
, and
D. J.
Kraft
, “
Colloid supported lipid bilayers for self-assembly
,”
Soft Matter
15
,
1345
1360
(
2019
).
25.
B. R.
Seo
,
X.
Chen
,
L.
Ling
,
Y. H.
Song
,
A. A.
Shimpi
,
S.
Choi
,
J.
Gonzalez
,
J.
Sapudom
,
K.
Wang
,
R. C.
Andresen Eguiluz
et al, “
Collagen microarchitecture mechanically controls myofibroblast differentiation
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
11387
11398
(
2020
).
26.
I.
Bin
et al, “
Molecular weight dependency of polyrotaxane-cross-linked polymer gel extensibility
,”
Chem. Commun.
52
,
13757
13759
(
2016
).
27.
M. E.
Helgeson
,
S. E.
Moran
,
H. Z.
An
, and
P. S.
Doyle
, “
Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions
,”
Nat. Mater.
11
,
344
352
(
2012
).
28.
A. L. R.
Bug
,
S. A.
Safran
,
G. S.
Grest
, and
I.
Webman
, “
Do interactions raise or lower a percolation threshold?
,”
Phys. Rev. Lett.
55
,
1896
1899
(
1985
).
29.
S.
Zhang
,
L.
Zhang
,
M.
Bouzid
,
D. Z.
Rocklin
,
E.
Del Gado
, and
X.
Mao
, “
Correlated rigidity percolation and colloidal gels
,”
Phys. Rev. Lett.
123
,
058001
(
2019
).
30.
C.
Rueb
and
C.
Zukoski
, “
Viscoelastic properties of colloidal gels
,”
J. Rheol.
41
,
197
218
(
1997
).
31.
E. D.
Cubuk
,
R. J. S.
Ivancic
,
S. S.
Schoenholz
,
D. J.
Strickland
,
A.
Basu
,
Z. S.
Davidson
,
J.
Fontaine
,
J. L.
Hor
,
Y.-R.
Huang
,
Y.
Jiang
,
N. C.
Keim
,
K. D.
Koshigan
,
J. A.
Lefever
,
T.
Liu
,
X.-G.
Ma
,
D. J.
Magagnosc
,
E.
Morrow
,
C. P.
Ortiz
,
J. M.
Rieser
,
A.
Shavit
,
T.
Still
,
Y.
Xu
,
Y.
Zhang
,
K. N.
Nordstrom
,
P. E.
Arratia
,
R. W.
Carpick
,
D. J.
Durian
,
Z.
Fakhraai
,
D. J.
Jerolmack
,
D.
Lee
,
J.
Li
,
R.
Riggleman
,
K. T.
Turner
,
A. G.
Yodh
,
D. S.
Gianola
, and
A. J.
Liu
, “
Structure-property relationships from universal signatures of plasticity in disordered solids
,”
Science
358
,
1033
1037
(
2017
).
32.
L. C.
Johnson
,
B. J.
Landrum
, and
R. N.
Zia
, “
Yield of reversible colloidal gels during flow start-up: Release from kinetic arrest
,”
Soft Matter
14
,
5048
5068
(
2018
).
33.
S.
Manneville
, “
Recent experimental probes of shear banding
,”
Rheol. Acta
47
,
301
318
(
2008
).
34.
S.
Aime
,
L.
Ramos
, and
L.
Cipelletti
, “
Microscopic dynamics and failure precursors of a gel under mechanical load
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
3587
3592
(
2018
).
35.
J. B.
Hipp
,
J. J.
Richards
, and
N. J.
Wagner
, “
Structure-property relationships of sheared carbon black suspensions determined by simultaneous rheological and neutron scattering measurements
,”
J. Rheol.
63
,
423
436
(
2019
).
36.
A.
Rao
,
T.
Divoux
,
G. H.
McKinley
, and
A. J.
Hart
, “
Shear melting and recovery of crosslinkable cellulose nanocrystal–polymer gels
,”
Soft Matter
15
,
4401
4412
(
2019
).
37.
M.
Fazilati
,
S.
Ingelsten
,
S.
Wojno
,
T.
Nypelö
, and
R.
Kádár
, “
Thixotropy of cellulose nanocrystal suspensions
,”
J. Rheol.
65
,
1035
1052
(
2021
).
38.
X.
Huang
,
S. R.
Raghavan
,
P.
Terech
, and
R. G.
Weiss
, “
Distinct kinetic pathways generate organogel networks with contrasting fractality and thixotropic properties
,”
J. Am. Chem. Soc.
128
,
15341
15352
(
2006
).
39.
X. M.
Dong
,
J.-F.
Revol
, and
D. G.
Gray
, “
Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose
,”
Cellulose
5
,
19
32
(
1998
).
40.
S.
Montanari
,
M.
Roumani
,
L.
Heux
, and
M. R.
Vignon
, “
Topochemistry of carboxylated cellulose nanocrystals resulting from tempo-mediated oxidation
,”
Macromolecules
38
,
1665
1671
(
2005
).
41.
M.-C.
Li
,
Q.
Wu
,
R. J.
Moon
,
M. A.
Hubbe
, and
M. J.
Bortner
, “
Rheological aspects of cellulose nanomaterials: Governing factors and emerging applications
,”
Adv. Mater.
33
,
2006052
(
2021
).
42.
P.
Keyvani
,
K.
Nyamayaro
,
P.
Mehrkhodavandi
, and
S. G.
Hatzikiriakos
, “
Cationic and anionic cellulose nanocrystalline (CNC) hydrogels: A rheological study
,”
Phys. Fluids
33
,
043102
(
2021
).
43.
Y.
Boluk
and
C.
Danumah
, “
Analysis of cellulose nanocrystal rod lengths by dynamic light scattering and electron microscopy
,”
J. Nanopart. Res.
16
,
1
7
(
2014
).
44.
M.
Danesh
,
A. A.
Moud
,
D.
Mauran
,
S.
Hojabr
,
R.
Berry
,
M.
Pawlik
, and
S. G.
Hatzikiriakos
, “
The yielding of attractive gels of nanocrystal cellulose (CNC)
,”
J. Rheol.
65
,
855
869
(
2021
).
45.
R.
Poling-Skutvik
,
E.
McEvoy
,
V.
Shenoy
, and
C. O.
Osuji
, “
Yielding and bifurcated aging in nanofibrillar networks
,”
Phys. Rev. Mater.
4
,
102601
(
2020
).
46.
G. J.
Donley
,
P. K.
Singh
,
A.
Shetty
, and
S. A.
Rogers
, “
Elucidating the G″ overshoot in soft materials with a yield transition via a time-resolved experimental strain decomposition
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
21945
21952
(
2020
).
47.
K.
Kamani
,
G. J.
Donley
, and
S. A.
Rogers
, “
Unification of the rheological physics of yield stress fluids
,”
Phys. Rev. Lett.
126
,
218002
(
2021
).
48.
E.
Zaccarelli
, “
Colloidal gels: Equilibrium and non-equilibrium routes
,”
J. Phys. Condens. Matter
19
,
323101
(
2007
).
49.
M. J.
Solomon
and
Q.
Lu
, “
Rheology and dynamics of particles in viscoelastic media
,”
Curr. Opin. Colloid Interface Sci.
6
,
430
437
(
2001
).
50.
J.
Mewis
and
N. J.
Wagner
, “
Thixotropy
,”
Adv. Colloid Interface Sci.
147-148
,
214
227
(
2009
).
51.
R.
Larson
, “
Constitutive equations for thixotropic fluids
,”
J. Rheol.
59
,
595
611
(
2015
).
52.
P.
Coussot
,
Q. D.
Nguyen
,
H.
Huynh
, and
D.
Bonn
, “
Viscosity bifurcation in thixotropic, yielding fluids
,”
J. Rheol.
46
,
573
589
(
2002
).
53.
R.
Weltmann
, “
Thixotropic behavior of oils
,”
Ind. Eng. Chem. Anal. Ed.
15
,
424
429
(
1943
).
54.
R.
Ziegelbaur
and
J.
Caruthers
, “
Rheological properties of poly (dimethylsiloxane) filled with fumed silica: I. Hysteresis behaviour
,”
J. Non-Newtonian Fluid Mech.
17
,
45
68
(
1985
).
55.
M.
Krystyjan
,
M.
Sikora
,
G.
Adamczyk
,
A.
Dobosz
,
P.
Tomasik
,
W.
Berski
,
M.
Łukasiewicz
, and
P.
Izak
, “
Thixotropic properties of waxy potato starch depending on the degree of the granules pasting
,”
Carbohydr. Polym.
141
,
126
134
(
2016
).
56.
K.
Te Nijenhuis
and
H. H.
Winter
, “
Mechanical properties at the gel point of a crystallizing poly (vinyl chloride) solution
,”
Macromolecules
22
,
411
414
(
1989
).
57.
L.
Li
and
Y.
Aoki
, “
Rheological images of poly (vinyl chloride) gels. 1. The dependence of sol- gel transition on concentation
,”
Macromolecules
30
,
7835
7841
(
1997
).
58.
F.
Chambon
and
H.
Winter
, “
Stopping of crosslinking reaction in a PDMS polymer at the gel point
,”
Polym. Bull.
13
,
499
503
(
1985
).
59.
F.
Chambon
and
H. H.
Winter
, “
Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry
,”
J. Rheol.
31
,
683
697
(
1987
).
60.
Y.
Xu
,
A. D.
Atrens
, and
J. R.
Stokes
, “
Liquid, gel and soft glass phase transitions and rheology of nanocrystalline cellulose suspensions as a function of concentration and salinity
,”
Soft Matter
14
,
1953
1963
(
2018
).
61.
K. A.
Whitaker
,
Z.
Varga
,
L. C.
Hsiao
,
M. J.
Solomon
,
J. W.
Swan
, and
E. M.
Furst
, “
Colloidal gel elasticity arises from the packing of locally glassy clusters
,”
Nat. Commun.
10
,
2237
(
2019
).
62.
P.-K.
Kao
,
M. J.
Solomon
, and
M.
Ganesan
, “
Microstructure and elasticity of dilute gels of colloidal discoids
,”
Soft Matter
18
,
1350
1363
(
2022
).
63.
J.
Cho
,
M.-C.
Heuzey
,
A.
Bégin
, and
P. J.
Carreau
, “
Viscoelastic properties of chitosan solutions: Effect of concentration and ionic strength
,”
J. Food Eng.
74
,
500
515
(
2006
).
64.
H.
Fukuzumi
,
R.
Tanaka
,
T.
Saito
, and
A.
Isogai
, “
Dispersion stability and aggregation behavior of tempo-oxidized cellulose nanofibrils in water as a function of salt addition
,”
Cellulose
21
,
1553
1559
(
2014
).
65.
F.
Cherhal
,
F.
Cousin
, and
I.
Capron
, “
Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering
,”
Langmuir
31
,
5596
5602
(
2015
).
66.
J. H.
Cho
and
I.
Bischofberger
, “
Yield precursor in primary creep of colloidal gels
,”
Soft Matter
18
,
7612
7620
(
2022
).
67.
J.
Sprakel
,
S. B.
Lindström
,
T. E.
Kodger
, and
D. A.
Weitz
, “
Stress enhancement in the delayed yielding of colloidal gels
,”
Phys. Rev. Lett.
106
,
248303
(
2011
).
68.
T.
Gibaud
,
C.
Perge
,
S. B.
Lindström
,
N.
Taberlet
, and
S.
Manneville
, “
Multiple yielding processes in a colloidal gel under large amplitude oscillatory stress
,”
Soft Matter
12
,
1701
1712
(
2016
).
69.
T.
Divoux
,
M. A.
Fardin
,
S.
Manneville
, and
S.
Lerouge
, “
Shear banding of complex fluids
,”
Ann. Rev. Fluid Mech.
48
,
81
103
(
2016
).
70.
S.
Mora
, “
The kinetic approach to fracture in transient networks
,”
Soft Matter
7
,
4908
4917
(
2011
).
71.
L.
Morlet-Decarnin
,
T.
Divoux
, and
S.
Manneville
, “
Slow dynamics and time composition superposition in gels of cellulose nanocrystals
,”
J. Chem. Phys.
156
,
214901
(
2022
).
72.
P. J.
Skrzeszewska
,
J.
Sprakel
,
F. A.
de Wolf
,
R.
Fokkink
,
M. A.
Cohen Stuart
, and
J.
van der Gucht
, “
Fracture and self-healing in a well-defined self-assembled polymer network
,”
Macromolecules
43
,
3542
3548
(
2010
).
73.
K. A.
Erk
,
J. D.
Martin
,
Y. T.
Hu
, and
K. R.
Shull
, “
Extreme strain localization and sliding friction in physically associating polymer gels
,”
Langmuir
28
,
4472
4478
(
2012
).
74.
T.
Bhattacharyya
,
A. R.
Jacob
,
G.
Petekidis
, and
Y. M.
Joshi
, “
On the nature of flow curve and categorization of thixotropic yield stress materials
,”
J. Rheol.
67
,
461
477
(
2023
).
75.
M.
Manning
,
E.
Daub
,
J.
Langer
, and
J.
Carlson
, “
Rate-dependent shear bands in a shear-transformation-zone model of amorphous solids
,”
Phys. Rev. E
79
,
016110
(
2009
).
76.
J.
Colombo
and
E.
Del Gado
, “
Stress localization, stiffening, and yielding in a model colloidal gel
,”
J. Rheol.
58
,
1089
1116
(
2014
).
77.
T.
Divoux
,
D.
Tamarii
,
C.
Barentin
, and
S.
Manneville
, “
Transient shear banding in a simple yield stress fluid
,”
Phys. Rev. Lett.
104
,
208301
(
2010
).
78.
P. D.
Olmsted
, “
Perspectives on shear banding in complex fluids
,”
Rheol. Acta
47
,
283
300
(
2008
).
79.
J.
Paredes
,
N.
Shahidzadeh-Bonn
, and
D.
Bonn
, “
Shear banding in thixotropic and normal emulsions
,”
J. Phys. Condens. Matter
23
,
284116
(
2011
).
80.
M.
Rubinstein
and
R. H.
Colby
,
Polymer Physics
(
Oxford University Press
,
New York
,
2003
).
81.
M. E.
Helgeson
, “
Colloidal behavior of nanoemulsions: Interactions, structure, and rheology
,”
Curr. Opin. Colloid Interface Sci.
25
,
39
50
(
2016
).
82.
C. R.
Seager
and
T. G.
Mason
, “
Slippery diffusion-limited aggregation
,”
Phys. Rev. E
75
,
011406
(
2007
).
83.
S.
Babu
,
J.-C.
Gimel
, and
T.
Nicolai
, “
Diffusion limited cluster aggregation with irreversible slippery bonds
,”
Eur. Phys. J. E
27
,
297
308
(
2008
).
84.
M.
Lin
,
H.
Lindsay
,
D.
Weitz
,
R.
Ball
,
R.
Klein
, and
P.
Meakin
, “
Universality in colloid aggregation
,”
Nature
339
,
360
362
(
1989
).
85.
C. J.
Dimitriou
,
L.
Casanellas
,
T. J.
Ober
, and
G. H.
McKinley
, “
Rheo-PIV of a shear-banding wormlike micellar solution under large amplitude oscillatory shear
,”
Rheol. Acta
51
,
395
411
(
2012
).
86.
M. A.
Calabrese
,
S. A.
Rogers
,
L.
Porcar
, and
N. J.
Wagner
, “
Understanding steady and dynamic shear banding in a model wormlike micellar solution
,”
J. Rheol.
60
,
1001
1017
(
2016
).
87.
R.
Blaak
,
S.
Auer
,
D.
Frenkel
, and
H.
Löwen
, “
Crystal nucleation of colloidal suspensions under shear
,”
Phys. Rev. Lett.
93
,
068303
(
2004
).
88.
P.
Ballesta
,
N.
Koumakis
,
R.
Besseling
,
W. C.
Poon
, and
G.
Petekidis
, “
Slip of gels in colloid–polymer mixtures under shear
,”
Soft Matter
9
,
3237
3245
(
2013
).
89.
Y.
Kobayashi
,
N.
Arai
, and
A.
Nikoubashman
, “
Structure and dynamics of amphiphilic janus spheres and spherocylinders under shear
,”
Soft Matter
16
,
476
486
(
2020
).
90.
M. M.
Talukdar
,
I.
Vinckier
,
P.
Moldenaers
, and
R.
Kinget
, “
Rheological characterization of xanthan gum and hydroxypropylmethyl cellulose with respect to controlled-release drug delivery
,”
J. Pharm. Sci.
85
,
537
540
(
1996
).
91.
V.
Mitsoulas
,
S.
Varchanis
,
Y.
Dimakopoulos
, and
J.
Tsamopoulos
, “
Dynamics and apparent permeability of the glycocalyx layer: Start-up and pulsating shear experiments in silico
,”
Phys. Rev. Fluids
7
,
013102
(
2022
).
92.
J. P.
Sullivan
and
A.
Bose
, “
On the connection between slurry rheology and electrochemical performance of graphite anodes in lithium-ion batteries
,”
Electrochem. Commun.
141
,
107353
(
2022
).
93.
T.
Lombardo
,
A. C.
Ngandjong
,
A.
Belhcen
, and
A. A.
Franco
, “
Carbon-binder migration: A three-dimensional drying model for lithium-ion battery electrodes
,”
Energy Storage Mater.
43
,
337
347
(
2021
).

Supplementary Material

You do not currently have access to this content.