Recently, a debate is raising the concern of possible carbonaceous sulfur hydrides with room-temperature superconductivity around 270 GPa. In order to systematically investigate the structural information and relevant natures of C–S–H superconductors, we performed an extremely extensive structure search and first-principles calculations under high pressures. As a result, the metastable stoichiometries of CSH7, C2SH14, CS2H10, and CS2H11 were unveiled under high pressure, which can be viewed as CH4 units inserted into the S–H framework. Given the super-high superconductivity of Im3̄m-SH3, we performed electron–phonon coupling calculations of these compounds,the metastable of R3m-CSH7, Cm-CSH7, Cm-CS2H10, P3m1-CS2H10, Cm-CS2H11, and Fmm2-CS2H11 are predicted to become good phonon-mediated superconductors that could reach Tc of 130, 120, 72, 74, 92, and 70 K at 270 GPa, respectively. Furthermore, we identified that high Tc is associated with the large contribution of the S–H framework to the electron density of states near the Fermi level. Our results highlight the importance of the S–H framework in superconductivity and verify that the suppression of density of states of these carbonaceous sulfur hydrides by CH4 units results in Tc lower than that of Im3̄m-SH3, which could act as a useful guidance in the design and optimization of high-Tc superconductors in these and related systems.

1.
D.
van Delft
and
P.
Kes
, “
The discovery of superconductivity
,”
Phys. Today
63
(
9
),
38
(
2010
).
2.
J.
Bardeen
,
L. N.
Cooper
, and
J. R.
Schrieffer
, “
Theory of superconductivity
,”
Phys. Rev.
108
(
5
),
1175
(
1957
).
3.
P.
Cudazzo
,
G.
Profeta
,
A.
Sanna
,
A.
Floris
,
A.
Continenza
,
S.
Massidda
, and
E. K. U.
Gross
, “
Electron-phonon interaction and superconductivity in metallic molecular hydrogen. I. Electronic and dynamical properties under pressure
,”
Phys. Rev. B
81
(
13
),
134505
(
2010
).
4.
N. W.
Ashcroft
, “
Metallic hydrogen: A high-temperature superconductor?
,”
Phys. Rev. Lett.
21
(
26
),
1748
(
1968
).
5.
L.
Zhang
,
Y.
Niu
,
Q.
Li
,
T.
Cui
,
Y.
Wang
,
Y.
Ma
,
Z.
He
, and
G.
Zou
, “
Ab initio prediction of superconductivity in molecular metallic hydrogen under high pressure
,”
Solid State Commun.
141
(
11
),
610
(
2007
).
6.
N. W.
Ashcroft
, “
Hydrogen dominant metallic alloys: High temperature superconductors?
,”
Phys. Rev. Lett.
92
,
187002
(
2004
).
7.
A. P.
Drozdov
,
M. I.
Eremets
,
I. A.
Troyan
,
V.
Ksenofontov
, and
S. I.
Shylin
, “
Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system
,”
Nature
525
,
73
(
2015
).
8.
M.
Einaga
,
M.
Sakata
,
T.
Ishikawa
,
K.
Shimizu
,
M. I.
Eremets
,
A. P.
Drozdov
,
I. A.
Troyan
,
N.
Hirao
, and
Y.
Ohishi
, “
Crystal structure of the superconducting phase of sulfur hydride
,”
Nat. Phys.
12
,
835
(
2016
).
9.
Y.
Li
,
J.
Hao
,
H.
Liu
,
Y.
Li
, and
Y.
Ma
, “
The metallization and superconductivity of dense hydrogen sulfide
,”
J. Chem. Phys.
140
,
174712
(
2014
).
10.
D.
Duan
,
Y.
Liu
,
F.
Tian
,
D.
Li
,
X.
Huang
,
Z.
Zhao
,
H.
Yu
,
B.
Liu
,
W.
Tian
, and
T.
Cui
, “
Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity
,”
Sci. Rep.
4
,
6968
(
2014
).
11.
N.
Bernstein
,
C. S.
Hellberg
,
M. D.
Johannes
,
I. I.
Mazin
, and
M. J.
Mehl
, “
What superconducts in sulfur hydrides under pressure and why
,”
Phys. Rev. B
91
,
060511
(
2015
).
12.
D.
Duan
,
X.
Huang
,
F.
Tian
,
D.
Li
,
H.
Yu
,
Y.
Liu
,
Y.
Ma
,
B.
Liu
, and
T.
Cui
, “
Pressure-induced decomposition of solid hydrogen sulfide
,”
Phys. Rev. B
91
,
180502
(
2015
).
13.
I.
Errea
,
M.
Calandra
,
C. J.
Pickard
,
J. R.
Nelson
,
R. J.
Needs
,
Y.
Li
,
H.
Liu
,
Y.
Zhang
,
Y.
Ma
, and
F.
Mauri
, “
High-pressure hydrogen sulfide from first principles: A strongly anharmonic phonon-mediated superconductor
,”
Phys. Rev. Lett.
114
,
157004
(
2015
).
14.
X.
Feng
,
J.
Zhang
,
G.
Gao
,
H.
Liu
, and
H.
Wang
, “
Compressed sodalite-like MgH 6 as a potential high-temperature superconductor
,”
RSC Adv.
5
,
59292
(
2015
).
15.
D. C.
Lonie
,
J.
Hooper
,
B.
Altintas
, and
E.
Zurek
, “
Metallization of magnesium polyhydrides under pressure
,”
Phys. Rev. B
87
,
054107
(
2013
).
16.
H.
Wang
,
J. S.
Tse
,
K.
Tanaka
,
T.
Iitaka
, and
Y.
Ma
, “
Superconductive sodalite-like clathrate calcium hydride at high pressures
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
6463
(
2012
).
17.
Y.
Li
,
J.
Hao
,
H.
Liu
,
J. S.
Tse
,
Y.
Wang
, and
Y.
Ma
, “
Pressure-stabilized superconductive yttrium hydrides
,”
Sci. Rep.
5
,
9948
(
2015
).
18.
I. A.
Troyan
,
D. V.
Semenok
,
A. G.
Kvashnin
,
A. G.
Ivanova
,
V. B.
Prakapenka
,
E.
Greenberg
,
A. G.
Gavriliuk
,
I. S.
Lyubutin
,
V. V.
Struzhkin
, and
A. R.
Oganov
, “
Anomalous high-temperature superconductivity in YH6
,”
Adv. Mater.
33
,
2006832
(
2021
).
19.
P. P.
Kong
,
V. S.
Minkov
,
M. A.
Kuzovnikov
,
S. P.
Drozdov
,
A. P.
Besedin
,
S.
Mozaffari
,
L.
Balicas
,
F. F.
Balakirev
,
V. B.
Prakapenka
,
E.
Greenberg
et al, “
Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure
,”
Nat. Commun.
12
(
1
),
5075
(
2021
).
20.
F.
Peng
,
Y.
Sun
,
C. J.
Pickard
,
R. J.
Needs
,
Q.
Wu
, and
Y.
Ma
, “
Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity
,”
Phys. Rev. Lett.
119
,
107001
(
2017
).
21.
H.
Liu
,
I. I.
Naumov
,
R.
Hoffmann
,
N. W.
Ashcroft
, and
R. J.
Hemley
, “
Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
6990
(
2017
).
22.
A. P.
Durajski
,
C.
Wang
,
Y.
Li
,
R.
Szczȩśniak
, and
J.-H.
Cho
, “
Evidence of phonon-mediated superconductivity in LaH10 at high pressure
,”
Ann. Phys.
533
,
2000518
(
2020
).
23.
C.
Wang
,
S.
Yi
, and
J.-H.
Cho
, “
Multiband nature of room-temperature superconductivity in LaH10 at high pressure
,”
Phys. Rev. B
101
,
104506
(
2020
).
24.
Z. M.
Geballe
,
H.
Liu
,
A. K.
Mishra
,
M.
Ahart
,
M.
Somayazulu
,
Y.
Meng
,
M.
Baldini
, and
R. J.
Hemley
, “
Synthesis and stability of lanthanum superhydrides
,”
Angew. Chem., Int. Ed.
57
,
688
(
2018
).
25.
M.
Somayazulu
,
M.
Ahart
,
A. K.
Mishra
,
Z. M.
Geballe
,
M.
Baldini
,
Y.
Meng
,
V. V.
Struzhkin
, and
R. J.
Hemley
, “
Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures
,”
Phys. Rev. Lett.
122
,
027001
(
2019
).
26.
Y. F.
Ge
,
F.
Zhang
, and
Y. G.
Yao
, “
First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution
,”
Phys. Rev. B
93
,
224513
(
2016
).
27.
C.
Kokail
,
W.
von der Linden
, and
L.
Boeri
, “
Prediction of high-Tc conventional superconductivity in the ternary lithium borohydride system
,”
Phys. Rev. Mater.
1
,
074803
(
2017
).
28.
D.
Li
,
Y.
Liu
,
F. B.
Tian
,
S. L.
Wei
,
Z.
Liu
,
D. F.
Duan
,
B. B.
Liu
, and
T.
Cui
, “
Pressure-induced superconducting ternary hydride H3SXe: A theoretical investigation
,”
Front. Phys.
13
,
137107
(
2018
).
29.
B. B.
Liu
et al, “
Effect of covalent bonding on the superconducting critical temperature of the HS-Se system
,”
Phys. Rev. B
98
,
174101
(
2018
).
30.
M.
Amsler
, “
Thermodynamics and superconductivity of SxSe1−xH3
,”
Phys. Rev. B
99
,
060102
(
2019
).
31.
H.
Guan
,
Y.
Sun
, and
H.
Liu
, “
Superconductivity of H3S doped with light elements
,”
Phys. Rev. Res.
3
,
043102
(
2021
).
32.
T.
Wang
,
M.
Hirayama
,
T.
Nomoto
,
T.
Koretsune
,
R.
Arita
, and
J. A.
Flores-Livas
, “
Absence of conventional room-temperature superconductivity at high pressure in carbon-doped H3S
,”
Phys. Rev. B
104
,
064510
(
2021
).
33.
Y.
Sun
,
X.
Li
,
T.
Iitaka
,
H.
Liu
, and
Y.
Xie
, “
Crystal structures and superconductivity of carbonaceous sulfur hydrides at pressures up to 300 GPa
,”
Phys. Rev. B
105
,
134501
(
2022
).
34.
Y.
Sun
,
Y.
Tian
,
B.
Jiang
,
X.
Li
,
H.
Li
,
T.
Iitaka
,
X.
Zhong
, and
Y.
Xie
, “
Computational discovery of a dynamically stable cubic SH3-like high-temperature superconductor at 100 GPa via CH4 intercalation
,”
Phys. Rev. B
101
,
174102
(
2020
).
35.
Z.
Liao
,
Z.
Zhang
,
J.
You
,
G.
Bo
, and
G.
Su
, “
Enhanced superconductivity in CSH compounds at high pressure
,”
Phys. Rev. B
105
,
L020510
(
2021
).
36.
M.
Du
,
Z.
Zhang
,
T.
Cui
, and
D.
Duan
, “
Pressure-induced superconducting CS2H10 with an H3S framework
,”
Phys. Chem. Chem. Phys.
23
,
22779
(
2021
).
37.
W.
Cui
,
T.
Bi
,
J.
Shi
,
Y.
Li
,
H.
Liu
,
E.
Zurek
, and
R. J.
Hemley
, “
Route to high-Tc superconductivity via CH4-intercalated H3S hydride perovskites
,”
Phys. Rev. B
101
,
134504
(
2020
).
38.
Y.
Ge
,
F.
Zhang
,
R. P.
Dias
,
R. J.
Hemley
, and
Y.
Yao
, “
Hole-doped room-temperature superconductivity in H(3)S(1−x)Z(x) (Z=C, Si)
,”
Mater. Today Phys.
15
,
100330
(
2020
).
39.
A.
Lamichhane
,
R.
Kumar
,
M.
Ahart
,
N. P.
Salke
,
N.
Dasenbrock-Gammon
,
E.
Snider
,
Y.
Meng
,
B.
Lavina
,
S.
Chariton
,
V. B.
Prakapenka
et al, “
X-ray diffraction and equation of state of the C–S–H room-temperature superconductor
,”
J. Chem. Phys.
155
,
114703
(
2021
).
40.
J. E.
Hirsch
and
F.
Marsiglio
, “
Unusual width of the superconducting transition in a hydride
,”
Nature
596
,
E9
(
2021
).
41.
J. E.
Hirsch
and
F.
Marsiglio
, “
Absence of magnetic evidence for superconductivity in hydrides under high pressure
,”
Physica C
584
,
1353866
(
2021
).
42.
J. E.
Hirsch
and
F.
Marsiglio
, “
Nonstandard superconductivity or no superconductivity in hydrides under high pressure
,”
Phys. Rev. B
103
,
134505
(
2021
).
43.
M.
Gubler
,
JA.
Flores-Livas
,
A.
Kozhevnikov
, and
S.
Goedecker
, “
Missing theoretical evidence for conventional room-temperature superconductivity in low-enthalpy structures of carbonaceous sulfur hydrides
,”
Phys. Rev. Mater.
6
,
014801
(
2022
).
44.
Y.
Quan
and
W. E.
Pickett
, “
Van Hove singularities and spectral smearing in high-temperature superconducting H3S
,”
Phys. Rev. B
93
,
104526
(
2016
).
45.
W.
Sano
,
T.
Koretsune
,
T.
Tadano
,
R.
Akashi
, and
R.
Arita
, “
Effect of van Hove singularities on high-Tc superconductivity in H3S
,”
Phys. Rev. B
93
,
094525
(
2016
).
46.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
, “
Crystal structure prediction via particle-swarm optimization
,”
Phys. Rev. B
82
,
094116
(
2010
).
47.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
, “
Calypso: A method for crystal structure prediction
,”
Comput. Phys. Commun.
183
,
2063
(
2012
).
48.
B.
Gao
,
P.
Gao
,
S.
Lu
,
J.
Lv
,
Y.
Wang
, and
Y.
Ma
, “
Interface structure prediction via CALYPSO method
,”
Sci. Bull.
64
,
301
(
2019
).
49.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
(
1964
).
50.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1996
).
51.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
52.
J. P.
Perdew
and
Y.
Wang
, “
Accurate and simple analytic representation of the electron-gas correlation energy
,”
Phys. Rev. B
45
,
13244
(
1992
).
53.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
et al, “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys. Condens. Matter
21
,
395502
(
2009
).
54.
D. R.
Hamann
, “
Optimized norm-conserving Vanderbilt pseudopotentials
,”
Phys. Rev. B
88
,
085117
(
2013
).
55.
P. B.
Allen
and
R. C.
Dynes
, “
Transition temperature of strong-coupled superconductors reanalyzed
,”
Phys. Rev. B
12
,
905
(
1975
).
56.
G. M.
Eliashberg
, “
Interactions between electrons and lattice vibrations in a superconductor
,”
Sov. Phys. JETP
11
,
696
(
1960
), see http://jetp.ras.ru/cgi-bin/dn/e_011_03_0696.pdf.
57.
E. R.
Margine
and
F.
Giustino
, “
Anisotropic Migdal-Eliashberg theory using Wannier functions
,”
Phys. Rev. B
87
,
024505
(
2013
).
58.
J.
Noffsinger
,
F.
Giustino
,
B. D.
Malone
,
C.-H.
Park
,
S. G.
Louie
, and
M. L.
Cohen
, “
Epw: A program for calculating the electron–phonon coupling using maximally localized wannier functions
,”
Comput. Phys. Commun.
181
,
2140
(
2010
).
59.
S.
Poncé
,
E. R.
Margine
,
C.
Verdi
, and
F.
Giustino
, “
EPW: Electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions
,”
Comput. Phys. Commun.
209
,
116
(
2016
).
60.
C. J.
Pickard
and
R. J.
Needs
, “
Structure of phase III of solid hydrogen
,”
Nat. Phys.
3
,
473
(
2007
).
61.
H.
Luo
,
R. G.
Greene
, and
A. L.
Ruoff
, “
β-Po phase of sulfur at 162 GPa: X-Ray diffraction study to 212 GPa
,”
Phys. Rev. Lett.
71
,
2943
(
1993
).
62.
O.
Degtyareva
,
E.
Gregoryanz
,
M.
Somayazulu
,
P.
Dera
,
H. K.
Mao
, and
R. J.
Hemley
, “
Novel chain structures in group VI elements
,”
Nat. Mater.
4
,
152
(
2005
).
63.
G.
Gao
,
A. R.
Oganov
,
Y.
Ma
,
H.
Wang
,
P.
Li
,
Y.
Li
,
T.
Iitaka
, and
G.
Zou
, “
Dissociation of methane under high pressure
,”
J. Chem. Phys.
133
,
144508
(
2010
).
64.
H.
Liu
,
I. I.
Naumov
, and
R. J.
Hemley
, “
Dense hydrocarbon structures at megabar pressures
,”
J. Phys. Chem. Lett.
7
,
4218
(
2016
).
65.
A. S.
Naumova
,
S. V.
Lepeshkin
, and
A. R.
Oganov
, “
Hydrocarbons under pressure: Phase diagrams and surprising new compounds in the C–H System
,”
J. Phys. Chem. C
123
,
20497
(
2019
).
66.
N.
Zarifi
,
H.
Liu
, and
J. S.
Tse
, “
Structures of the metallic and superconducting high pressure phases of solid CS2
,”
Sci. Rep.
5
,
10458
(
2015
).
67.
A. D.
Becke
and
K. E.
Edgecombe
, “
A simple measure of electron localization in atomic and molecular systems
,”
J. Chem. Phys.
92
,
5397
(
1990
).

Supplementary Material

You do not currently have access to this content.