Binding energies of radicals and molecules at dust grain surfaces are important parameters for understanding and modeling the chemical inventory of interstellar gas clouds. While first-principles methods can reliably be used to compute such binding energies, the complex structure and varying sizes and stoichiometries of realistic dust grains make a complete characterization of all adsorption sites exposed by their surfaces challenging. Here, we focus on nanoclusters composed of Mg-rich silicates as models of interstellar dust grains and two adsorbates of particular astrochemical relevance; H and CO. We employ a compressed sensing method to identify descriptors for the binding energies, which are expressed as analytical functions of intrinsic properties of the clusters, obtainable through a single first-principles calculation of the cluster. The descriptors are identified based on a diverse training dataset of binding energies at low-energy structures of nanosilicate clusters, where the latter structures were obtained using a first-principles-based global optimization method. The composition of the descriptors reveals how electronic, electrostatic, and geometric properties of the nanosilicates control the binding energies and demonstrates distinct physical origins of the bond formation for H and CO. The predictive performance of the descriptors is found to be limited by cluster reconstruction, e.g., breaking of internal metal–oxygen bonds, upon the adsorption event, and strategies to account for this phenomenon are discussed. The identified descriptors and the computed datasets of stable nanosilicate clusters along with their binding energies are expected to find use in astrochemical models of reaction networks occurring at silicate grain surfaces.

1.
V.
Wakelam
,
E.
Bron
,
S.
Cazaux
,
F.
Dulieu
,
C.
Gry
,
P.
Guillard
,
E.
Habart
,
L.
Hornekær
,
S.
Morisset
,
G.
Nyman
,
V.
Pirronello
,
S. D.
Price
,
V.
Valdivia
,
G.
Vidali
, and
N.
Watanabe
, “
H2 formation on interstellar dust grains: The viewpoints of theory, experiments, models and observations
,”
Mol. Astrophys.
9
,
1
36
(
2017
).
2.
G.
Fedoseev
,
H. M.
Cuppen
,
S.
Ioppolo
,
T.
Lamberts
, and
H.
Linnartz
, “
Experimental evidence for glycolaldehyde and ethylene glycol formation by surface hydrogenation of CO molecules under dense molecular cloud conditions
,”
Mon. Not. R. Astron. Soc.
448
,
1288
1297
(
2015
).
3.
G.
Fedoseev
,
K.-J.
Chuang
,
S.
Ioppolo
,
D.
Qasim
,
E. F.
van Dishoeck
, and
H.
Linnartz
, “
Formation of glycerol through hydrogenation of CO ice under prestellar core conditions
,”
Astrophys. J.
842
,
52
(
2017
).
4.
H. M.
Cuppen
,
C.
Walsh
,
T.
Lamberts
,
D.
Semenov
,
R. T.
Garrod
,
E. M.
Penteado
, and
S.
Ioppolo
, “
Grain surface models and data for astrochemistry
,”
Space Sci. Rev.
212
,
1
58
(
2017
).
5.
J. K.
Nørskov
,
F.
Abild-Pedersen
,
F.
Studt
, and
T.
Bligaard
, “
Density functional theory in surface chemistry and catalysis
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
937
943
(
2011
).
6.
M.
Minissale
,
Y.
Aikawa
,
E.
Bergin
,
M.
Bertin
,
W. A.
Brown
,
S.
Cazaux
,
S. B.
Charnley
,
A.
Coutens
,
H. M.
Cuppen
,
V.
Guzman
,
H.
Linnartz
,
M. R. S.
McCoustra
,
A.
Rimola
,
J. G.
Schrauwen
,
C.
Toubin
,
P.
Ugliengo
,
N.
Watanabe
,
V.
Wakelam
, and
F.
Dulieu
, “
Thermal desorption of interstellar ices: A review on the controlling parameters and their implications from snowlines to chemical complexity
,”
ACS Earth Space Chem.
6
,
597
630
(
2022
).
7.
T.
Henning
, “
Cosmic silicates
,”
Annu. Rev. Astron. Astrophys.
48
,
21
46
(
2010
).
8.
E.
Escamilla-Roa
,
F.
Moreno
,
J. J.
López-Moreno
, and
C. I.
Sainz-Díaz
, “
Atomistic and infrared study of CO-water amorphous ice onto olivine dust grain
,”
Planet. Space Sci.
135
,
17
26
(
2017
).
9.
E.
Escamilla-Roa
,
J.
Martin-Torres
, and
C. I.
Sainz-Díaz
, “
Adsorption of methane and CO2 onto olivine surfaces in Martian dust conditions
,”
Planet. Space Sci.
153
,
163
171
(
2018
).
10.
L.
Zamirri
,
M.
Corno
,
A.
Rimola
, and
P.
Ugliengo
, “
Forsterite surfaces as models of interstellar core dust grains: Computational study of carbon monoxide adsorption
,”
ACS Earth Space Chem.
1
,
384
398
(
2017
).
11.
L.
Zamirri
,
S.
Pantaleone
, and
P.
Ugliengo
, “
Carbon monoxide adsorption at forsterite surfaces as models of interstellar dust grains: An unexpected bathochromic (red) shift of the CO stretching frequency
,”
J. Chem. Phys.
150
,
064702
(
2019
).
12.
J.
Navarro-Ruiz
,
P.
Ugliengo
,
M.
Sodupe
, and
A.
Rimola
, “
Does Fe2+ in olivine-based interstellar grains play any role in the formation of H2? Atomistic insights from DFT periodic simulations
,”
Chem. Commun.
52
,
6873
6876
(
2016
).
13.
H. J.
Fraser
,
S. E.
Bisschop
,
K. M.
Pontoppidan
,
A. G. G. M.
Tielens
, and
E. F.
Van Dishoeck
, “
Probing the surfaces of interstellar dust grains: The adsorption of CO at bare grain surfaces
,”
Mon. Not. R. Astron. Soc.
356
,
1283
1292
(
2005
).
14.
A.
Li
and
B. T.
Draine
, “
On ultrasmall silicate grains in the diffuse interstellar medium
,”
Astrophys. J.
550
,
L213
(
2001
).
15.
A. M.
Escatllar
,
T.
Lazaukas
,
S. M.
Woodley
, and
S. T.
Bromley
, “
Structure and properties of nanosilicates with olivine (Mg2SiO4)N and pyroxene (MgSiO3)N compositions
,”
ACS Earth Space Chem.
3
,
2390
2403
(
2019
).
16.
I.
Oueslati
,
B.
Kerkeni
, and
S. T.
Bromley
, “
Trends in the adsorption and reactivity of hydrogen on magnesium silicate nanoclusters
,”
Phys. Chem. Chem. Phys.
17
,
8951
8963
(
2015
).
17.
J.
Greeley
, “
Theoretical heterogeneous catalysis: Scaling relationships and computational catalyst design
,”
Annu. Rev. Chem. Biomol. Eng.
7
,
605
635
(
2016
).
18.
T.
Villadsen
,
N. F. W.
Ligterink
, and
M.
Andersen
, “
Predicting binding energies of astrochemically relevant molecules via machine learning
,”
Astron. Astrophys.
666
,
A45
(
2022
).
19.
S.
Back
,
J.
Yoon
,
N.
Tian
,
W.
Zhong
,
K.
Tran
, and
Z. W.
Ulissi
, “
Convolutional neural network of atomic surface structures to predict binding energies for high-throughput screening of catalysts
,”
J. Phys. Chem. Lett.
10
,
4401
4408
(
2019
).
20.
V.
Fung
,
G.
Hu
,
P.
Ganesh
, and
B. G.
Sumpter
, “
Machine learned features from density of states for accurate adsorption energy prediction
,”
Nat. Commun.
12
,
88
(
2021
).
21.
W.
Xu
,
K.
Reuter
, and
M.
Andersen
, “
Predicting binding motifs of complex adsorbates using machine learning with a physics-inspired graph representation
,”
Nat. Comput. Sci.
2
,
443
450
(
2022
).
22.
L.
Chanussot
,
A.
Das
,
S.
Goyal
,
T.
Lavril
,
M.
Shuaibi
,
M.
Riviere
,
K.
Tran
,
J.
Heras-Domingo
,
C.
Ho
,
W.
Hu
,
A.
Palizhati
,
A.
Sriram
,
B.
Wood
,
J.
Yoon
,
D.
Parikh
,
C. L.
Zitnick
, and
Z.
Ulissi
, “
Open catalyst 2020 (OC20) dataset and community challenges
,”
ACS Catal.
11
,
6059
6072
(
2021
).
23.
J.
Lan
,
A.
Palizhati
,
M.
Shuaibi
,
B. M.
Wood
,
B.
Wander
,
A.
Das
,
M.
Uyttendaele
,
C. L.
Zitnick
, and
Z. W.
Ulissi
, “
AdsorbML: Accelerating adsorption energy calculations with machine learning
,” arXiv:2211.16486 (
2022
).
24.
R.
Ouyang
,
S.
Curtarolo
,
E.
Ahmetcik
,
M.
Scheffler
, and
L. M.
Ghiringhelli
, “
SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates
,”
Phys. Rev. Mater.
2
,
083802
(
2018
).
25.
M.
Andersen
,
S. V.
Levchenko
,
M.
Scheffler
, and
K.
Reuter
, “
Beyond scaling relations for the description of catalytic materials
,”
ACS Catal.
9
,
2752
2759
(
2019
).
26.
M. K.
Bisbo
and
B.
Hammer
, “
Efficient global structure optimization with a machine-learned surrogate model
,”
Phys. Rev. Lett.
124
,
086102
(
2020
).
27.
M. K.
Bisbo
and
B.
Hammer
, “
Global optimization of atomic structure enhanced by machine learning
,”
Phys. Rev. B
105
,
245404
(
2022
).
28.
C. E.
Rasmussen
and
C. K. I.
Williams
,
Gaussian Processes for Machine Learning
(
The MIT Press
,
2005
).
29.
F.
Neese
, “
The ORCA program system
,”
WIREs Comput. Mol. Sci.
2
,
73
78
(
2012
).
30.
F.
Neese
, “
Software update: The ORCA program system, version 4.0
,”
WIREs Comput. Mol. Sci.
8
,
e1327
(
2018
).
31.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
32.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
33.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
34.
M.
O’Keeffe
, “
A proposed rigorous definition of coordination number
,”
Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
35
,
772
775
(
1979
).
35.
A.
Slavensky
and
B.
Hammer
Accelerating structure search using Voronoi graph descriptors
,” (to be published).
36.
M.
Valle
and
A. R.
Oganov
, “
Crystal fingerprint space—A novel paradigm for studying crystal-structure sets
,”
Acta Crystallogr., Sect. A: Found. Crystallogr.
66
,
507
517
(
2010
).
37.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
6170
(
1999
).
38.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
, “
Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields
,”
J. Phys. Chem.
98
,
11623
11627
(
1994
).
39.
Y.
Zhao
and
D.
Truhlar
, “
The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals
,”
Theor. Chem. Acc.
120
,
215
241
(
2008
).
40.
S.
Boys
and
F.
Bernardi
, “
The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors
,”
Mol. Phys.
19
,
553
566
(
1970
).
41.
A. H.
Larsen
,
J. J.
Mortensen
,
J.
Blomqvist
,
I. E.
Castelli
,
R.
Christensen
,
M.
Dułak
,
J.
Friis
,
M. N.
Groves
,
B.
Hammer
,
C.
Hargus
,
E. D.
Hermes
,
P. C.
Jennings
,
P. B.
Jensen
,
J.
Kermode
,
J. R.
Kitchin
,
E. L.
Kolsbjerg
,
J.
Kubal
,
K.
Kaasbjerg
,
S.
Lysgaard
,
J. B.
Maronsson
,
T.
Maxson
,
T.
Olsen
,
L.
Pastewka
,
A.
Peterson
,
C.
Rostgaard
,
J.
Schiøtz
,
O.
Schütt
,
M.
Strange
,
K. S.
Thygesen
,
T.
Vegge
,
L.
Vilhelmsen
,
M.
Walter
,
Z.
Zeng
, and
K. W.
Jacobsen
, “
The atomic simulation environment—A Python library for working with atoms
,”
J. Phys.: Condens. Matter
29
,
273002
(
2017
).
42.
B.
Kerkeni
and
S. T.
Bromley
, “
Competing mechanisms of catalytic H2 formation and dissociation on ultrasmall silicate nanocluster dust grains
,”
Mon. Not. R. Astron. Soc.
435
,
1486
1492
(
2013
).
43.
J.
Navarro-Ruiz
,
M.
Sodupe
,
P.
Ugliengo
, and
A.
Rimola
, “
Interstellar H adsorption and H2 formation on the crystalline (010) forsterite surface: A B3LYP-D2* periodic study
,”
Phys. Chem. Chem. Phys.
16
,
17447
17457
(
2014
).
44.
J.
Navarro-Ruiz
,
J. A.
Martinez-Gonzalez
,
M.
Sodupe
,
P.
Ugliengo
, and
A.
Rimola
, “
Relevance of silicate surface morphology in interstellar H2 formation. Insights from quantum chemical calculations
,”
Mon. Not. R. Astron. Soc.
453
,
914
924
(
2015
).
45.
W.
Xu
,
M.
Andersen
, and
K.
Reuter
, “
Data-driven descriptor engineering and refined scaling relations for predicting transition metal oxide reactivity
,”
ACS Catal.
11
,
734
742
(
2020
).
46.
M.
Andersen
and
K.
Reuter
, “
Adsorption enthalpies for catalysis modeling through machine-learned descriptors
,”
Acc. Chem. Res.
54
,
2741
2749
(
2021
).
47.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
, “
Bond-orientational order in liquids and glasses
,”
Phys. Rev. B
28
,
784
(
1983
).
48.
F.
Calle-Vallejo
, “
The ABC of generalized coordination numbers and their use as a descriptor in electrocatalysis
,”
Adv. Sci.
2207644
(
2023
).
49.
T.
Lu
and
F.
Chen
, “
Multiwfn: A multifunctional wavefunction analyzer
,”
J. Comput. Chem.
33
,
580
592
(
2012
).
50.
B.
Hammer
and
J. K.
Nørskov
, “
Electronic factors determining the reactivity of metal surfaces
,”
Surf. Sci.
343
,
211
(
1995
).
51.
B.
Hammer
and
J. K.
Nørskov
, “
Theoretical surface science and catalysis—Calculations and concepts
,”
Adv. Catal.
45
,
71
(
2000
).
52.
B.
Kerkeni
,
M.-C.
Bacchus-Montabonel
, and
S. T.
Bromley
, “
How hydroxylation affects hydrogen adsorption and formation on nanosilicates
,”
Mol. Astrophys.
7
,
1
8
(
2017
).

Supplementary Material

You do not currently have access to this content.