Understanding the nucleation behavior of water in dilute polymeric solutions is quintessential for the development of suitable artificial ice recrystallization inhibition (IRI) agents. Although poly(vinyl alcohol) (PVA) is found to be one of the most potent biomimetic IRI agents, the molecular understanding of the nucleation behavior of water in the presence of PVA is still lacking. Here, we use molecular dynamics to elucidate the role of concentration, degree of supercooling, degree of polymerization, and amphiphilicity of PVA and PVA-like polymers on the homogeneous nucleation of water in dilute polymeric solutions using the seeding method. Using classical nucleation theory (CNT), our simulations indicate an increase in the chemical potential difference between ice and melt that favors ice nucleation. However, it also predicts a significant increase in the ice–melt interfacial energy that impedes nucleation. The relative increase in the interfacial energy dominates the increase in the chemical potential difference, which results in a decrease in the nucleation rate of water with an increase in the solute concentration. This study contradicts the previous simulation study that suggested the promotion of homogeneous ice nucleation by PVA and supports the experimental observations of the heterogeneous origins of ice nucleation. Our results also suggest the non-classical origins of ice nucleation in polymeric solutions and the limitation of the CNT in predicting heterogeneous ice nucleation in polymeric solutions.

1.
A. L.
DeVries
and
D. E.
Wohlschlag
, “
Freezing resistance in some antarctic fishes
,”
Science
163
,
1073
1075
(
1969
).
2.
C. A.
Knight
,
E.
Driggers
, and
A. L.
DeVries
, “
Adsorption to ice of fish antifreeze glycopeptides 7 and 8
,”
Biophys. J.
64
,
252
259
(
1993
).
3.
J. A.
Raymond
and
A. L.
DeVries
, “
Adsorption inhibition as a mechanism of freezing resistance in polar fishes
,”
Proc. Natl. Acad. Sci. U. S. A.
74
,
2589
2593
(
1977
).
4.
J. A.
Gilbert
,
P. L.
Davies
, and
J.
Laybourn-Parry
, “
A hyperactive, Ca2+-dependent antifreeze protein in an antarctic bacterium
,”
FEMS Microbiol. Lett.
245
,
67
72
(
2005
).
5.
J. G.
Duman
and
T. M.
Olsen
, “
Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants
,”
Cryobiology
30
,
322
328
(
1993
).
6.
D. W.
Wu
,
J. G.
Duman
, and
L.
Xu
, “
Enhancement of insect antifreeze protein activity by antibodies
,”
Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol.
1076
,
416
420
(
1991
).
7.
C.
Sidebottom
,
S.
Buckley
,
P.
Pudney
,
S.
Twigg
,
C.
Jarman
,
C.
Holt
,
J.
Telford
,
A.
McArthur
,
D.
Worrall
,
R.
Hubbard
, and
P.
Lillford
, “
Heat-stable antifreeze protein from grass
,”
Nature
406
,
256
(
2000
).
8.
T. S.
Burcham
,
D. T.
Osuga
,
Y.
Yeh
, and
R. E.
Feeney
, “
A kinetic description of antifreeze glycoprotein activity
,”
J. Biol. Chem.
261
,
6390
6397
(
1986
).
9.
Y.
Yeh
and
R. E.
Feeney
, “
Antifreeze proteins: Structures and mechanisms of function
,”
Chem. Rev.
96
,
601
618
(
1996
).
10.
R. E.
Feeney
and
R.
Hofmann
, “
Depression of freezing point by glycoproteins from an Antarctic fish
,”
Nature
243
,
357
359
(
1973
).
11.
F.
Bachtiger
,
T. R.
Congdon
,
C.
Stubbs
,
M. I.
Gibson
, and
G. C.
Sosso
, “
The atomistic details of the ice recrystallisation inhibition activity of PVA
,”
Nat. Commun.
12
,
1323
(
2021
).
12.
Z.
Piao
,
J. K.
Park
,
M.
Patel
,
H. J.
Lee
, and
B.
Jeong
, “
Poly(l-ala-co-l-lys) exhibits excellent ice recrystallization inhibition activity
,”
ACS Macro Lett.
10
,
1436
1442
(
2021
).
13.
T.
Congdon
,
R.
Notman
, and
M. I.
Gibson
, “
Antifreeze (glyco) protein mimetic behavior of poly(vinyl alcohol): Detailed structure ice recrystallization inhibition activity study
,”
Biomacromolecules
14
,
1578
1586
(
2013
).
14.
A. A.
Burkey
,
C. L.
Riley
,
L. K.
Wang
,
T. A.
Hatridge
, and
N. A.
Lynd
, “
Understanding poly(vinyl alcohol)-mediated ice recrystallization inhibition through ice adsorption measurement and pH effects
,”
Biomacromolecules
19
,
248
255
(
2018
).
15.
R.
Gupta
and
R.
Deswal
, “
Antifreeze proteins enable plants to survive in freezing conditions
,”
J. Biosci.
39
,
931
944
(
2014
).
16.
C.
Sabando
,
W.
Ide
,
S.
Rodríguez-Llamazares
,
R. M.
Bastías
,
M.
Valenzuela
,
C.
Rojas
,
J.
Castaño
,
N.
Pettinelli
,
R.
Bouza
, and
N.
Müller
, “
Preparation of poly(vinyl alcohol) microparticles for freeze protection of sensitive fruit crops
,”
Polymers
14
,
2452
(
2022
).
17.
P. L.
Davies
, “
Ice-binding proteins: a remarkable diversity of structures for stopping and starting ice growth
,”
Trends Biochem. Sci.
39
,
548
555
(
2014
).
18.
Y.
Sun
,
J.
Liu
,
Z.
Li
,
J.
Wang
, and
Y.
Huang
, “
Nonionic and water-soluble poly(d/l-serine) as a promising biomedical polymer for cryopreservation
,”
ACS Appl. Mater. Interfaces
13
,
18454
18461
(
2021
).
19.
G.
Hedir
,
C.
Stubbs
,
P.
Aston
,
A. P.
Dove
, and
M. I.
Gibson
, “
Synthesis of degradable poly(vinyl alcohol) by radical ring-opening copolymerization and ice recrystallization inhibition activity
,”
ACS Macro Lett.
6
,
1404
1408
(
2017
).
20.
B.
Wowk
,
E.
Leitl
,
C. M.
Rasch
,
N.
Mesbah-Karimi
,
S. B.
Harris
, and
G. M.
Fahy
, “
Vitrification enhancement by synthetic ice blocking agents
,”
Cryobiology
40
,
228
236
(
2000
).
21.
W.
Jung
,
Y.-P.
Kim
, and
E.
Jin
, “
Antifreeze protein-covered surfaces
,”
Antifreeze Proteins
2
,
307
326
(
2020
).
22.
S.
Liu
,
W.
Wang
,
E.
von Moos
,
J.
Jackman
,
G.
Mealing
,
R.
Monette
, and
R. N.
Ben
, “
In vitro studies of antifreeze glycoprotein (AFGP) and a C-linked AFGP analogue
,”
Biomacromolecules
8
,
1456
1462
(
2007
).
23.
R. C.
Deller
,
M.
Vatish
,
D. A.
Mitchell
, and
M. I.
Gibson
, “
Synthetic polymers enable non-vitreous cellular cryopreservation by reducing ice crystal growth during thawing
,”
Nat. Commun.
5
,
3244
(
2014
).
24.
A.
Tran-Guzman
,
R.
Moradian
,
C.
Walker
,
H.
Cui
,
M.
Corpuz
,
I.
Gonzalez
,
C.
Nguyen
,
P.
Meza
,
X.
Wen
, and
M.
Culty
, “
Toxicity profiles and protective effects of antifreeze proteins from insect in mammalian models
,”
Toxicol. Lett.
368
,
9
23
(
2022
).
25.
M.
Fitzner
,
P.
Pedevilla
, and
A.
Michaelides
, “
Predicting heterogeneous ice nucleation with a data-driven approach
,”
Nat. Commun.
11
,
4777
(
2020
).
26.
Y.
Qiu
,
A.
Hudait
, and
V.
Molinero
, “
How size and aggregation of ice-binding proteins control their ice nucleation efficiency
,”
J. Am. Chem. Soc.
141
,
7439
7452
(
2019
).
27.
Y.
Qiu
,
N.
Odendahl
,
A.
Hudait
,
R.
Mason
,
A. K.
Bertram
,
F.
Paesani
,
P. J.
DeMott
, and
V.
Molinero
, “
Ice nucleation efficiency of hydroxylated organic surfaces is controlled by their structural fluctuations and mismatch to ice
,”
J. Am. Chem. Soc.
139
,
3052
3064
(
2017
).
28.
A.
Hudait
,
N.
Odendahl
,
Y.
Qiu
,
F.
Paesani
, and
V.
Molinero
, “
Ice-nucleating and antifreeze proteins recognize ice through a diversity of anchored clathrate and ice-like motifs
,”
J. Am. Chem. Soc.
140
,
4905
4912
(
2018
).
29.
A. K.
Metya
and
V.
Molinero
, “
Is ice nucleation by organic crystals nonclassical? An assessment of the monolayer hypothesis of ice nucleation
,”
J. Am. Chem. Soc.
143
,
4607
4624
(
2021
).
30.
K.
Mochizuki
,
Y.
Qiu
, and
V.
Molinero
, “
Promotion of homogeneous ice nucleation by soluble molecules
,”
J. Am. Chem. Soc.
139
,
17003
17006
(
2017
).
31.
T.
Congdon
,
B. T.
Dean
,
J.
Kasperczak-Wright
,
C. I.
Biggs
,
R.
Notman
, and
M. I.
Gibson
, “
Probing the biomimetic ice nucleation inhibition activity of poly(vinyl alcohol) and comparison to synthetic and biological polymers
,”
Biomacromolecules
16
,
2820
2826
(
2015
).
32.
D. E.
Mitchell
,
A. E.
Fayter
,
R. C.
Deller
,
M.
Hasan
,
J.
Gutierrez-Marcos
, and
M. I.
Gibson
, “
Ice-recrystallization inhibiting polymers protect proteins against freeze-stress and enable glycerol-free cryostorage
,”
Mater. Horiz.
6
,
364
368
(
2019
).
33.
C. I.
Biggs
,
C.
Stubbs
,
B.
Graham
,
A. E.
Fayter
,
M.
Hasan
, and
M. I.
Gibson
, “
Mimicking the ice recrystallization activity of biological antifreezes. When is a new polymer ‘active’?
,”
Macromol. Biosci.
19
,
1900082
(
2019
).
34.
P. G.
Georgiou
,
H. L.
Marton
,
A. N.
Baker
,
T. R.
Congdon
,
T. F.
Whale
, and
M. I.
Gibson
, “
Polymer self-assembly induced enhancement of ice recrystallization inhibition
,”
J. Am. Chem. Soc.
143
,
7449
7461
(
2021
).
35.
P. M.
Naullage
,
L.
Lupi
, and
V.
Molinero
, “
Molecular recognition of ice by fully flexible molecules
,”
J. Phys. Chem. C
121
,
26949
26957
(
2017
).
36.
C.
Budke
and
T.
Koop
, “
Ice recrystallization inhibition and molecular recognition of ice faces by poly(vinyl alcohol)
,”
ChemPhysChem
7
,
2601
2606
(
2006
).
37.
G. C.
Sosso
,
J.
Chen
,
S. J.
Cox
,
M.
Fitzner
,
P.
Pedevilla
,
A.
Zen
, and
A.
Michaelides
, “
Crystal nucleation in liquids: Open questions and future challenges in molecular dynamics simulations
,”
Chem. Rev.
116
,
7078
7116
(
2016
).
38.
M.
Mousazadehkasin
and
J. G.
Tsavalas
, “
Insights into design of biomimetic glycerol-grafted polyol-based polymers for ice nucleation/recrystallization inhibition and thermal hysteresis activity
,”
Biomacromolecules
21
,
4626
4637
(
2020
).
39.
L.
Weng
,
A.
Swei
, and
M.
Toner
, “
Role of synthetic antifreeze agents in catalyzing ice nucleation
,”
Cryobiology
84
,
91
94
(
2018
).
40.
P. M.
Naullage
and
V.
Molinero
, “
Slow propagation of ice binding limits the ice-recrystallization inhibition efficiency of PVA and other flexible polymers
,”
J. Am. Chem. Soc.
142
,
4356
4366
(
2020
).
41.
L.
Weng
,
S. L.
Stott
, and
M.
Toner
, “
Molecular dynamics at the interface between ice and poly(vinyl alcohol) and ice recrystallization inhibition
,”
Langmuir
34
,
5116
5123
(
2017
).
42.
J. S.
Bermejo
and
C. M.
Ugarte
, “
Influence of water content on structure and mobility of polyvinyl alcohol: A molecular dynamics simulation
,”
J. Chem. Phys.
129
,
154907
(
2008
).
43.
Y.
Tamai
,
H.
Tanaka
, and
K.
Nakanishi
, “
Molecular dynamics study of polymer-water interaction in hydrogels. 1. Hydrogen-bond structure
,”
Macromolecules
29
,
6750
6760
(
1996
).
44.
L.
Eickhoff
,
M.
Keßler
,
C.
Stubbs
,
J.
Derksen
,
M.
Viefhues
,
D.
Anselmetti
,
M. I.
Gibson
,
B.
Hoge
, and
T.
Koop
, “
Ice nucleation in aqueous solutions of short- and long-chain poly(vinyl alcohol) studied with a droplet microfluidics setup
,”
J. Chem. Phys.
158
,
154504
(
2023
).
45.
E.
Sanz
,
C.
Vega
,
J. R.
Espinosa
,
R.
Caballero-Bernal
,
J. L. F.
Abascal
, and
C.
Valeriani
, “
Homogeneous ice nucleation at moderate supercooling from molecular simulation
,”
J. Am. Chem. Soc.
135
,
15008
15017
(
2013
).
46.
J. R.
Espinosa
,
E.
Sanz
,
C.
Valeriani
, and
C.
Vega
, “
Homogeneous ice nucleation evaluated for several water models
,”
J. Chem. Phys.
141
,
18C529
(
2014
).
47.
J. R.
Espinosa
,
C.
Vega
,
C.
Valeriani
, and
E.
Sanz
, “
Seeding approach to crystal nucleation
,”
J. Chem. Phys.
144
,
034501
(
2016
).
48.
A.
Goswami
,
I. S.
Dalal
, and
J. K.
Singh
, “
Universal nucleation behavior of sheared systems
,”
Phys. Rev. Lett.
126
,
195702
(
2021
).
49.
A.
Goswami
,
I. S.
Dalal
, and
J. K.
Singh
, “
Seeding method for ice nucleation under shear
,”
J. Chem. Phys.
153
,
094502
(
2020
).
50.
J. R.
Espinosa
,
C.
Vega
,
C.
Valeriani
, and
E.
Sanz
, “
The crystal-fluid interfacial free energy and nucleation rate of NaCl from different simulation methods
,”
J. Chem. Phys.
142
,
194709
(
2015
).
51.
N.
Zimmermann
,
B.
Vorselaars
,
J. R.
Espinosa
,
D.
Quigley
,
W. R.
Smith
,
E.
Sanz
,
C.
Vega
, and
B.
Peters
, “
NaCl nucleation from brine in seeded simulations: Sources of uncertainty in rate estimates
,”
J. Chem. Phys.
148
,
222838
(
2018
).
52.
M.
Fitzner
,
G. C.
Sosso
,
S. J.
Cox
, and
A.
Michaelides
, “
The many faces of heterogeneous ice nucleation: Interplay between surface morphology and hydrophobicity
,”
J. Am. Chem. Soc.
137
,
13658
13669
(
2015
).
53.
A.
Zaragoza
,
M. M.
Conde
,
J. R.
Espinosa
,
C.
Valeriani
,
C.
Vega
, and
E.
Sanz
, “
Competition between ices Ih and Ic in homogeneous water freezing
,”
J. Chem. Phys.
143
,
134504
(
2015
).
54.
J.
Grabowska
,
S.
Blazquez
,
E.
Sanz
,
E. G.
Noya
,
I. M.
Zeron
,
J.
Algaba
,
J. M.
Miguez
,
F. J.
Blas
, and
C.
Vega
, “
Homogeneous nucleation rate of methane hydrate formation under experimental conditions from seeding simulations
,”
J. Chem. Phys.
158
,
114505
(
2023
).
55.
S.
Auer
and
D.
Frenkel
, “
Numerical prediction of absolute crystallization rates in hard-sphere colloids
,”
J. Chem. Phys.
120
,
3015
3029
(
2004
).
56.
S.
Auer
and
D.
Frenkel
, “
Prediction of absolute crystal-nucleation rate in hard-sphere colloids
,”
Nature
409
,
1020
1023
(
2001
).
57.
K. F.
Kelton
, “
Crystal nucleation in liquids and glasses
,”
Solid State Phys.
45
,
75
177
(
1991
).
58.
V.
Molinero
and
E. B.
Moore
, “
Water modeled as an intermediate element between carbon and silicon
,”
J. Phys. Chem. B
113
,
4008
4016
(
2009
).
59.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in’t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
, and
S. J.
Plimpton
, “
LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
60.
M. D.
Hanwell
,
D. E.
Curtis
,
D. C.
Lonie
,
T.
Vandermeersch
,
E.
Zurek
, and
G. R.
Hutchison
, “
Avogadro: An advanced semantic chemical editor, visualization, and analysis platform
,”
J. Cheminf.
4
,
17
(
2012
).
61.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
62.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool
,”
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2009
).
63.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
, “
A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters
,”
J. Chem. Phys.
76
,
637
649
(
1982
).
64.
D. J.
Evans
and
B. L.
Holian
, “
The Nose–Hoover thermostat
,”
J. Chem. Phys.
83
,
4069
4074
(
1985
).
65.
C.
Huang
,
C.
Li
,
P. Y.
Choi
,
K.
Nandakumar
, and
L. W.
Kostiuk
, “
A novel method for molecular dynamics simulation in the isothermal–isobaric ensemble
,”
Mol. Phys.
109
,
191
202
(
2011
).
66.
A. H.
Nguyen
and
V.
Molinero
, “
Identification of clathrate hydrates, hexagonal ice, cubic ice, and liquid water in simulations: The chill+ algorithm
,”
J. Phys. Chem. B
119
,
9369
9376
(
2015
).
67.
R.
Goswami
,
A.
Goswami
, and
J. K.
Singh
, “
d-SEAMS: Deferred structural elucidation analysis for molecular simulations
,”
J. Chem. Inf. Model.
60
,
2169
2177
(
2020
).
68.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
, “
Bond-orientational order in liquids and glasses
,”
Phys. Rev. B
28
,
784
(
1983
).
69.
H.
Tanaka
, “
Bond orientational order in liquids: Towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization
,”
Eur. Phys. J. E
35
,
113
(
2012
).
70.
T.
Li
,
D.
Donadio
,
G.
Russo
, and
G.
Galli
, “
Homogeneous ice nucleation from supercooled water
,”
Phys. Chem. Chem. Phys.
13
,
19807
19813
(
2011
).
71.
A. V.
Brukhno
,
J.
Anwar
,
R.
Davidchack
, and
R.
Handel
, “
Challenges in molecular simulation of homogeneous ice nucleation
,”
J. Phys.: Condens. Matter
20
,
494243
(
2008
).
72.
E. B.
Moore
,
E.
De La Llave
,
K.
Welke
,
D. A.
Scherlis
, and
V.
Molinero
, “
Freezing, melting and structure of ice in a hydrophilic nanopore
,”
Phys. Chem. Chem. Phys.
12
,
4124
4134
(
2010
).
73.
C.
Vega
,
E.
Sanz
, and
J. L. F.
Abascal
, “
The melting temperature of the most common models of water
,”
J. Chem. Phys.
122
,
114507
(
2005
).
74.
C.
McBride
,
J. L.
Aragones
,
E. G.
Noya
, and
C.
Vega
, “
A study of the influence of isotopic substitution on the melting point and temperature of maximum density of water by means of path integral simulations of rigid models
,”
Phys. Chem. Chem. Phys.
14
,
15199
15205
(
2012
).
75.
E. J.
Maginn
,
R. A.
Messerly
,
D. J.
Carlson
,
D. R.
Roe
, and
J. R.
Elliot
, “
Best practices for computing transport properties 1. Self-diffusivity and viscosity from equilibrium molecular dynamics [article v1.0]
,”
Living J. Comput. Mol. Sci.
1
,
6324
(
2018
).
76.
H.
Xue
,
Y.
Fu
,
Y.
Lu
,
D.
Hao
,
K.
Li
,
G.
Bai
,
Z.-C.
Ou-Yang
,
J.
Wang
, and
X.
Zhou
, “
Spontaneous freezing of water between 233 and 235 K is not due to homogeneous nucleation
,”
J. Am. Chem. Soc.
143
,
13548
13556
(
2021
).
77.
J. D.
Atkinson
,
B. J.
Murray
, and
D.
O’Sullivan
, “
Rate of homogenous nucleation of ice in supercooled water
,”
J. Phys. Chem. A
120
,
6513
6520
(
2016
).
78.
T.
Němec
, “
Estimation of ice–water interfacial energy based on pressure-dependent formulation of classical nucleation theory
,”
Chem. Phys. Lett.
583
,
64
68
(
2013
).
79.
S. C.
Hardy
, “
A grain boundary groove measurement of the surface tension between ice and water
,”
Philos. Mag.
35
,
471
484
(
1977
).
80.
Q.
Fan
,
Y.
Gao
,
C.
Zhu
,
J.
Liu
,
L.
Zhao
,
J.
Mao
,
S.
Wu
,
H.
Xue
,
J. S.
Francisco
,
X. C.
Zeng
, and
J.
Wang
, “
Unraveling molecular mechanism on dilute surfactant solution controlled ice recrystallization
,”
Langmuir
36
,
1691
1698
(
2020
).
81.
Z.
Wang
,
M.
Li
, and
T.
Wu
, “
Ice recrystallization inhibition activity in bile salts
,”
J. Colloid Interface Sci.
629
,
728
738
(
2023
).
82.
M. F.
Butler
, “
Freeze concentration of solutes at the ice/solution interface studied by optical interferometry
,”
Cryst. Growth Des.
2
,
541
548
(
2002
).
83.
G. D.
Soria
,
J. R.
Espinosa
,
J.
Ramirez
,
C.
Valeriani
,
C.
Vega
, and
E.
Sanz
, “
A simulation study of homogeneous ice nucleation in supercooled salty water
,”
J. Chem. Phys.
148
,
222811
(
2018
).
84.
P.
Montero de Hijes
,
J. R.
Espinosa
,
E.
Sanz
, and
C.
Vega
, “
Interfacial free energy of a liquid-solid interface: Its change with curvature
,”
J. Chem. Phys.
151
,
144501
(
2019
).
85.
W. S.
Price
,
H.
Ide
, and
Y.
Arata
, “
Self-diffusion of supercooled water to 238 K using PGSE NMR diffusion measurements
,”
J. Phys. Chem. A
103
,
448
450
(
1999
).
86.
A.
Noorjahan
and
P.
Choi
, “
Effect of free volume redistribution on the diffusivity of water and benzene in poly(vinyl alcohol)
,”
Chem. Eng. Sci.
121
,
258
267
(
2015
).
87.
R.
Kurapati
and
U.
Natarajan
, “
Factors responsible for the aggregation of poly(vinyl alcohol) in aqueous solution as revealed by molecular dynamics simulations
,”
Ind. Eng. Chem. Res.
59
,
16099
16111
(
2020
).
88.
N.
Zhang
,
Z.
Shen
,
C.
Chen
,
G.
He
, and
C.
Hao
, “
Effect of hydrogen bonding on self-diffusion in methanol/water liquid mixtures: A molecular dynamics simulation study
,”
J. Mol. Liq.
203
,
90
97
(
2015
).
89.
A.
Goswami
and
J. K.
Singh
, “
A hybrid topological and shape-matching approach for structure analysis
,”
J. Chem. Phys.
154
,
154502
(
2021
).
90.
T. D.
Kühne
and
R. Z.
Khaliullin
, “
Nature of the asymmetry in the hydrogen-bond networks of hexagonal ice and liquid water
,”
J. Am. Chem. Soc.
136
,
3395
3399
(
2014
).
91.
P.
Pirzadeh
and
P. G.
Kusalik
, “
On understanding stacking fault formation in ice
,”
J. Am. Chem. Soc.
133
,
704
707
(
2011
).
92.
G. C.
Sosso
,
T. F.
Whale
,
M. A.
Holden
,
P.
Pedevilla
,
B. J.
Murray
, and
A.
Michaelides
, “
Unravelling the origins of ice nucleation on organic crystals
,”
Chem. Sci.
9
,
8077
8088
(
2018
).

Supplementary Material

You do not currently have access to this content.