The Mpemba effect is a fingerprint of the anomalous relaxation phenomenon wherein an initially hotter system equilibrates faster than an initially colder system when both are quenched to the same low temperature. Experiments on a single colloidal particle trapped in a carefully shaped double well potential have demonstrated this effect recently [A. Kumar and J. Bechhoefer, Nature 584, 64 (2020)]. In a similar vein, here, we consider a piece-wise linear double well potential that allows us to demonstrate the Mpemba effect using an exact analysis based on the spectral decomposition of the corresponding Fokker–Planck equation. We elucidate the role of the metastable states in the energy landscape as well as the initial population statistics of the particles in showcasing the Mpemba effect. Crucially, our findings indicate that neither the metastability nor the asymmetry in the potential is a necessary or a sufficient condition for the Mpemba effect to be observed.

1.
E. B.
Mpemba
and
D. G.
Osborne
, “
Cool?
,”
Phys. Educ.
4
,
172
175
(
1969
).
2.
S. M.
Mirabedin
and
F.
Farhadi
, “
Numerical investigation of solidification of single droplets with and without evaporation mechanism
,”
Int. J. Refrig.
73
,
219
225
(
2017
).
3.
M.
Vynnycky
and
S.
Kimura
, “
Can natural convection alone explain the Mpemba effect?
,”
Int. J. Heat Mass Transfer
80
,
243
255
(
2015
).
4.
J. I.
Katz
, “
When hot water freezes before cold
,”
Am. J. Phys.
77
,
27
29
(
2009
).
5.
D.
Auerbach
, “
Supercooling and the Mpemba effect: When hot water freezes quicker than cold
,”
Am. J. Phys.
63
,
882
885
(
1995
).
6.
X.
Zhang
,
Y.
Huang
,
Z.
Ma
,
Y.
Zhou
,
J.
Zhou
,
W.
Zheng
,
Q.
Jiang
, and
C. Q.
Sun
, “
Hydrogen-bond memory and water-skin supersolidity resolving the Mpemba paradox
,”
Phys. Chem. Chem. Phys.
16
,
22995
23002
(
2014
).
7.
Y.
Tao
,
W.
Zou
,
J.
Jia
,
W.
Li
, and
D.
Cremer
, “
Different ways of hydrogen bonding in water—Why does warm water freeze faster than cold water?
,”
J. Chem. Theory Comput.
13
,
55
76
(
2017
).
8.
J.
Jin
and
W. A.
Goddard
III
, “
Mechanisms underlying the Mpemba effect in water from molecular dynamics simulations
,”
J. Phys. Chem. C
119
,
2622
2629
(
2015
).
9.
A.
Gijón
,
A.
Lasanta
, and
E.
Hernández
, “
Paths towards equilibrium in molecular systems: The case of water
,”
Phys. Rev. E
100
,
032103
(
2019
).
10.
P.
Chaddah
,
S.
Dash
,
K.
Kumar
, and
A.
Banerjee
, “
Overtaking while approaching equilibrium
,” arXiv:1011.3598 (
2010
).
11.
C.
Hu
,
J.
Li
,
S.
Huang
,
H.
Li
,
C.
Luo
,
J.
Chen
,
S.
Jiang
, and
L.
An
, “
Conformation directed Mpemba effect on polylactide crystallization
,”
Cryst. Growth Des.
18
,
5757
5762
(
2018
).
12.
Y.-H.
Ahn
,
H.
Kang
,
D.-Y.
Koh
, and
H.
Lee
, “
Experimental verifications of Mpemba-like behaviors of clathrate hydrates
,”
Korean J. Chem. Eng.
33
,
1903
1907
(
2016
).
13.
A.
Kumar
and
J.
Bechhoefer
, “
Exponentially faster cooling in a colloidal system
,”
Nature
584
,
64
68
(
2020
).
14.
A.
Kumar
,
R.
Chetrite
, and
J.
Bechhoefer
, “
Anomalous heating in a colloidal system
,”
Proc. Natl. Acad. Sci. U. S. A.
,
119
,
5
(
2021
).
15.
J.
Bechhoefer
,
A.
Kumar
, and
R.
Chétrite
, “
A fresh understanding of the Mpemba effect
,”
Nat. Rev. Phys.
3
,
534
(
2021
).
16.
A.
Gal
and
O.
Raz
, “
Precooling strategy allows exponentially faster heating
,”
Phys. Rev. Lett.
124
,
060602
(
2020
).
17.
I.
Klich
,
O.
Raz
,
O.
Hirschberg
, and
M.
Vucelja
, “
Mpemba index and anomalous relaxation
,”
Phys. Rev. X
9
,
021060
(
2019
).
18.
I.
Klich
and
M.
Vucelja
, “
Solution of the metropolis dynamics on a complete graph with application to the Markov chain Mpemba effect
,” arXiv:1812.11962 (
2018
).
19.
N.
Vadakkayil
and
S. K.
Das
, “
Should a hotter paramagnet transform quicker to a ferromagnet? Monte Carlo simulation results for Ising model
,”
Phys. Chem. Chem. Phys.
23
,
11186
(
2021
).
20.
I.
González-Adalid Pemartín
,
E.
Mompó
,
A.
Lasanta
,
V.
Martín-Mayor
, and
J.
Salas
, “
Slow growth of magnetic domains helps fast evolution routes for out-of-equilibrium dynamics
,”
Phys. Rev. E
104
,
044114
(
2021
).
21.
G.
Teza
,
R.
Yaacoby
, and
O.
Raz
, “
Relaxation shortcuts through boundary coupling
,”
Phys. Rev. Lett.
131
,
017101
(
2023
).
22.
M.
Baity-Jesi
,
E.
Calore
,
A.
Cruz
,
L. A.
Fernandez
,
J. M.
Gil-Narvión
,
A.
Gordillo-Guerrero
,
D.
Iñiguez
,
A.
Lasanta
,
A.
Maiorano
, and
E.
Marinari
, “
The Mpemba effect in spin glasses is a persistent memory effect
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
15350
15355
(
2019
).
23.
A.
Santos
and
A.
Prados
, “
Mpemba effect in molecular gases under nonlinear drag
,”
Phys. Fluids
32
,
072010
(
2020
).
24.
R.
Gómez González
,
N.
Khalil
, and
V.
Garzó
, “
Mpemba-like effect in driven binary mixtures
,”
Phys. Fluids
33
,
053301
(
2021
).
25.
R. G.
González
and
V.
Garzó
, “
Anomalous Mpemba effect in binary molecular suspensions
,” arXiv:2011.13237 (
2020
).
26.
A.
Patrón
,
B.
Sánchez-Rey
, and
A.
Prados
, “
Strong nonexponential relaxation and memory effects in a fluid with nonlinear drag
,”
Phys. Rev. E
104
,
064127
(
2021
).
27.
Z.
Lu
and
O.
Raz
, “
Nonequilibrium thermodynamics of the Markovian Mpemba effect and its inverse
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
5083
5088
(
2017
).
28.
T.
Van Vu
and
Y.
Hasegawa
, “
Toward relaxation asymmetry: Heating is faster than cooling
,”
Phys. Rev. Res.
3
,
043160
(
2021
).
29.
M. R.
Walker
and
M.
Vucelja
, “
Anomalous thermal relaxation of Langevin particles in a piecewise-constant potential
,”
J. Stat. Mech.: Theory Exp.
2021
,
113105
.
30.
D. M.
Busiello
,
D.
Gupta
, and
A.
Maritan
, “
Inducing and optimizing Markovian Mpemba effect with stochastic reset
,”
New J. Phys.
23
,
103012
(
2021
).
31.
A.
Lapolla
and
A.
Godec
, “
Faster uphill relaxation in thermodynamically equidistant temperature quenches
,”
Phys. Rev. Lett.
125
,
110602
(
2020
).
32.
J.
Degünther
and
U.
Seifert
, “
Anomalous relaxation from a non-equilibrium steady state: An isothermal analog of the Mpemba effect
,”
Europhys. Lett.
139
,
41002
(
2022
).
33.
M. R.
Walker
and
M.
Vucelja
, “
Mpemba effect in terms of mean first passage times of overdamped Langevin dynamics on a double-well potential
,” arXiv:2212.07496 (
2022
).
34.
F. J.
Schwarzendahl
and
H.
Löwen
, “
Anomalous cooling and overcooling of active colloids
,”
Phys. Rev. Lett.
129
,
138002
(
2022
).
35.
F.
Carollo
,
A.
Lasanta
, and
I.
Lesanovsky
, “
Exponentially accelerated approach to stationarity in Markovian open quantum systems through the Mpemba effect
,”
Phys. Rev. Lett.
127
,
060401
(
2021
).
36.
A.
Nava
and
M.
Fabrizio
, “
Lindblad dissipative dynamics in the presence of phase coexistence
,”
Phys. Rev. B
100
,
125102
(
2019
).
37.
A. K.
Chatterjee
,
S.
Takada
, and
H.
Hayakawa
, “
Quantum Mpemba effect in a quantum dot with reservoirs
,” arXiv:2304.02411 (
2023
).
38.
R.
Holtzman
and
O.
Raz
, “
Landau theory for the Mpemba effect through phase transitions
,”
Commun. Phys.
5
,
280
(
2022
).
39.
S.
Zhang
and
J.-X.
Hou
, “
Theoretical model for the Mpemba effect through the canonical first-order phase transition
,”
Phys. Rev. E
106
,
034131
(
2022
).
40.
G.
Teza
,
R.
Yaacoby
, and
O.
Raz
, “
Eigenvalue crossing as a phase transition in relaxation dynamics
,”
Phys. Rev. Lett.
130
,
207103
(
2023
).
41.
A.
Lasanta
,
F.
Vega Reyes
,
A.
Prados
, and
A.
Santos
, “
When the hotter cools more quickly: Mpemba effect in granular fluids
,”
Phys. Rev. Lett.
119
,
148001
(
2017
).
42.
A.
Torrente
,
M. A.
López-Castaño
,
A.
Lasanta
,
F. V.
Reyes
,
A.
Prados
, and
A.
Santos
, “
Large Mpemba-like effect in a gas of inelastic rough hard spheres
,”
Phys. Rev. E
99
,
060901
(
2019
).
43.
E.
Mompó
,
M.
Castaño
,
A.
Torrente
,
F. V.
Reyes
, and
A.
Lasanta
, “
Memory effects in a gas of viscoelastic particles
,”
Phys. Fluids
33
,
062005
(
2021
).
44.
A.
Biswas
,
V. V.
Prasad
,
O.
Raz
, and
R.
Rajesh
, “
Mpemba effect in driven granular Maxwell gases
,”
Phys. Rev. E
102
,
012906
(
2020
).
45.
A.
Biswas
,
V. V.
Prasad
, and
R.
Rajesh
, “
Mpemba effect in an anisotropically driven granular gas
,”
Europhys. Lett.
136
,
46001
(
2021
).
46.
A.
Biswas
,
V.
Prasad
, and
R.
Rajesh
, “
Mpemba effect in anisotropically driven inelastic Maxwell gases
,”
J. Stat. Phys.
186
,
45
(
2022
).
47.
A.
Megías
and
A.
Santos
, “
Mpemba-like effect protocol for granular gases of inelastic and rough hard disks
,”
Front. Phys.
10
,
739
(
2022
).
48.
A.
Biswas
,
V. V.
Prasad
, and
R.
Rajesh
, “
Mpemba effect in driven granular gases: Role of distance measures
,” arXiv:2303.10900 (
2023
).
49.
H.
Risken
,
The Fokker–Planck Equation
(
Springer
,
1996
), pp.
63
95
.
50.
C. W.
Gardiner
et al,
Handbook of Stochastic Methods
(
Springer
,
Berlin
,
1985
), Vol.
3
.
51.
M.
Mörsch
,
H.
Risken
, and
H.
Vollmer
, “
One-dimensional diffusion in soluble model potentials
,”
Z. Phys. B: Condens. Matter Quanta
32
,
245
252
(
1979
).
52.
M.
Ibáñez
,
C.
Dieball
,
A.
Lasanta
,
A.
Godec
, and
R. A.
Rica
, “
Heating and cooling are fundamentally asymmetric and evolve along distinct pathways
,” arXiv:2302.09061 (
2023
).
53.
S. S.
Chittari
and
Z.
Lu
, “
Geometric approach to nonequilibrium hasty shortcuts
,” arXiv:2304.06822 (
2023
).
54.
A.
Militaru
,
A.
Lasanta
,
M.
Frimmer
,
L. L.
Bonilla
,
L.
Novotny
, and
R. A.
Rica
, “
Kovacs memory effect with an optically levitated nanoparticle
,”
Phys. Rev. Lett.
127
,
130603
(
2021
).
You do not currently have access to this content.