In this work, we test a recently developed method to enhance classical auxiliary-field quantum Monte Carlo (AFQMC) calculations with quantum computers against examples from chemistry and material science, representative of classes of industry-relevant systems. As molecular test cases, we calculate the energy curve of H4 and the relative energies of ozone and singlet molecular oxygen with respect to triplet molecular oxygen, which is industrially relevant in organic oxidation reactions. We find that trial wave functions beyond single Slater determinants improve the performance of AFQMC and allow it to generate energies close to chemical accuracy compared to full configuration interaction or experimental results. In the field of material science, we study the electronic structure properties of cuprates through the quasi-1D Fermi–Hubbard model derived from CuBr2, where we find that trial wave functions with both significantly larger fidelities and lower energies over a mean-field solution do not necessarily lead to AFQMC results closer to the exact ground state energy.

1.
E.
Farhi
,
J.
Goldstone
, and
S.
Gutmann
, “
A quantum approximate optimization algorithm
,” arXiv:1411.4028 (
2014
).
2.
H.-Y.
Huang
,
R.
Kueng
,
G.
Torlai
,
V. V.
Albert
, and
J.
Preskill
,
Science
377
,
eabk3333
(
2022
).
3.
H.-Y.
Huang
,
M.
Broughton
,
J.
Cotler
,
S.
Chen
,
J.
Li
,
M.
Mohseni
,
H.
Neven
,
R.
Babbush
,
R.
Kueng
,
J.
Preskill
, and
J. R.
McClean
,
Science
376
,
1182
(
2022
).
4.
P.
Shor
, in
Proceedings 35th Annual Symposium on Foundations of Computer Science
(
IEEE
,
1994
), pp.
124
134
.
5.
C. H.
Bennett
and
G.
Brassard
, “
Theoretical aspects of quantum cryptography—Celebrating 30 years of BB84
,”
Theor. Comput. Sci.
560
,
7
(
2014
).
6.
A.
Bayerstadler
et al,
EPJ Quantum Technol.
8
,
25
(
2021
).
7.
R.
Santagati
,
A.
Aspuru-Guzik
,
R.
Babbush
,
M.
Degroote
,
L.
Gonzalez
,
E.
Kyoseva
,
N.
Moll
,
M.
Oppel
,
R. M.
Parrish
,
N. C.
Rubin
et al, “
Drug design on quantum computers
,” arXiv:2301.04114 (
2023
).
8.
B.
Bauer
,
S.
Bravyi
,
M.
Motta
, and
G. K.-L.
Chan
,
Chem. Rev.
120
,
12685
(
2020
).
9.
M. E.
Beverland
,
P.
Murali
,
M.
Troyer
,
K. M.
Svore
,
T.
Hoefler
,
V.
Kliuchnikov
,
G. H.
Low
,
M.
Soeken
,
A.
Sundaram
, and
A.
Vaschillo
, “
Assessing requirements to scale to practical quantum advantage
,” arXiv:2211.07629 (
2022
).
10.
S.
Chen
,
J.
Cotler
,
H.-Y.
Huang
, and
J.
Li
, “
The complexity of NISQ
,” arXiv:2210.07234 (
2022
).
11.
A.
Peruzzo
,
J.
McClean
,
P.
Shadbolt
,
M.-H.
Yung
,
X.-Q.
Zhou
,
P. J.
Love
,
A.
Aspuru-Guzik
, and
J. L.
O’Brien
,
Nat. Commun.
5
,
4213
(
2014
).
12.
J. R.
McClean
,
J.
Romero
,
R.
Babbush
, and
A.
Aspuru-Guzik
,
New J. Phys.
18
,
023023
(
2016
).
13.
F.
Arute
,
K.
Arya
,
R.
Babbush
,
D.
Bacon
,
J. C.
Bardin
,
R.
Barends
,
S.
Boixo
,
M.
Broughton
,
B. B.
Buckley
,
D. A.
Buell
,
B.
Burkett
,
N.
Bushnell
et al,
Science
369
,
1084
(
2020
).
14.
W. J.
Huggins
,
B. A.
O’Gorman
,
N. C.
Rubin
,
D. R.
Reichman
,
R.
Babbush
, and
J.
Lee
,
Nature
603
,
416
(
2022
).
15.
J.
Chow
,
O.
Dial
, and
J.
Gambetta
, “
IBM quantum breaks the 100-qubit processor barrier
,” iBM Research Blog,
2021
.
16.
Z.
Cai
,
R.
Babbush
,
S. C.
Benjamin
,
S.
Endo
,
W. J.
Huggins
,
Y.
Li
,
J. R.
McClean
, and
T. E.
O’Brien
, “
Quantum error mitigation
,” arXiv:2210.00921 (
2022
).
17.
Y.
Quek
,
D. S.
França
,
S.
Khatri
,
J. J.
Meyer
, and
J.
Eisert
, “
Exponentially tighter bounds on limitations of quantum error mitigation
,” arXiv:2210.11505 (
2022
).
18.
J. R.
McClean
,
S.
Boixo
,
V. N.
Smelyanskiy
,
R.
Babbush
, and
H.
Neven
,
Nat. Commun.
9
,
4812
(
2018
).
19.
K.
Dalton
,
C. K.
Long
,
Y. S.
Yordanov
,
C. G.
Smith
,
C. H. W.
Barnes
,
N.
Mertig
, and
D. R. M.
Arvidsson-Shukur
, “
Variational quantum chemistry requires gate-error probabilities below the fault-tolerance threshold
,” arXiv:2211.04505 (
2022
).
22.
H.-S.
Zhong
,
H.
Wang
,
Y.-H.
Deng
,
M.-C.
Chen
,
L.-C.
Peng
,
Y.-H.
Luo
,
J.
Qin
,
D.
Wu
,
X.
Ding
,
Y.
Hu
et al,
Science
370
,
1460
(
2020
).
23.
F. D.
Malone
,
R. M.
Parrish
,
A. R.
Welden
,
T.
Fox
,
M.
Degroote
,
E.
Kyoseva
,
N.
Moll
,
R.
Santagati
, and
M.
Streif
,
Chem. Sci.
13
,
3094
(
2022
).
24.
M.
Loipersberger
,
F. D.
Malone
,
A. R.
Welden
,
R. M.
Parrish
,
T.
Fox
,
M.
Degroote
,
E.
Kyoseva
,
N.
Moll
,
R.
Santagati
, and
M.
Streif
,
Chemical Science
14
(13),
3587
3599
(2023).
25.
S.-X.
Zhang
,
Z.-Q.
Wan
,
C.-K.
Lee
,
C.-Y.
Hsieh
,
S.
Zhang
, and
H.
Yao
,
Phys. Rev. Lett.
128
,
120502
(
2022
).
26.
J. R.
McClean
,
Z.
Jiang
,
N. C.
Rubin
,
R.
Babbush
, and
H.
Neven
,
Nat. Commun.
11
,
636
(
2020
).
27.
K.
Klymko
,
C.
Mejuto-Zaera
,
S. J.
Cotton
,
F.
Wudarski
,
M.
Urbanek
,
D.
Hait
,
M.
Head-Gordon
,
K. B.
Whaley
,
J.
Moussa
,
N.
Wiebe
et al,
PRX Quantum
3
,
020323
(
2022
).
28.
N. H.
Stair
,
C. L.
Cortes
,
R. M.
Parrish
,
J.
Cohn
, and
M.
Motta
, “
A stochastic quantum Krylov protocol with double factorized Hamiltonians
,” Physical Review A
107
(3), 032414 (2023).
29.
G.
Mazzola
and
G.
Carleo
, arXiv:2205.09203 (
2022
).
30.
T.
Tanaka
and
Y.
Morino
,
J. Mol. Spectrosc.
33
,
538
(
1970
).
31.
P. H.
Krupenie
,
J. Phys. Chem. Ref. Data
1
,
423
(
1972
).
32.
R.
Weast
,
CRC Handbook of Chemistry and Physics
,
64th ed.
(
CRC Press
,
Boca Raton, FL
,
1983
).
33.
S.
Zhang
and
H.
Krakauer
,
Phys. Rev. Lett.
90
,
136401
(
2003
).
35.
M.
Motta
and
S.
Zhang
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1364
(
2018
).
36.
S.
Zhang
,
Emergent Phenomena in Correlated Matter
(
Forschungszentrum
,
Jülich
,
2013
),
Vol. 3
, p.
15
.
37.
H.
Shi
and
S.
Zhang
,
J. Chem. Phys.
154
,
024107
(
2021
).
38.
J.
Lee
,
H. Q.
Pham
, and
D. R.
Reichman
,
J. Chem. Theory Comput.
18
,
7024
(
2022
).
39.
H.
Shi
and
S.
Zhang
,
Phys. Rev. B
95
,
116014
(
2017
).
40.
V.
Bach
,
E. H.
Lieb
, and
J. P.
Solovej
,
J. Stat. Phys.
76
,
3
(
1994
).
41.
C. V.
Kraus
and
J. I.
Cirac
,
New J. Phys.
12
,
113004
(
2010
).
42.
J. W.
Negele
and
H.
Orland
,
Quantum Many-Particle Systems
(
CRC Press
,
2018
).
43.
M.
Troyer
and
U.-J.
Wiese
,
Phys. Rev. Lett.
94
,
170201
(
2005
).
44.
E. J.
Landinez Borda
,
J.
Gomez
, and
M. A.
Morales
,
J. Chem. Phys.
150
,
074105
(
2019
).
45.
Z.
Sukurma
,
M.
Schlipf
,
M.
Humer
,
A.
Taheridehkordi
, and
G.
Kresse
, “
Benchmark phaseless auxiliary-field quantum Monte Carlo method for small molecules
,” arXiv:2303.04256 (
2023
).
46.
W.
Purwanto
,
S.
Zhang
, and
H.
Krakauer
,
J. Chem. Phys.
142
,
064302
(
2015
).
47.
F. D.
Malone
,
S.
Zhang
, and
M. A.
Morales
,
J. Chem. Theory Comput.
16
,
4286
(
2020
).
48.
M. A.
Morales
and
F. D.
Malone
,
J. Chem. Phys.
153
,
194111
(
2020
).
49.
H.
Hao
,
A.
Georges
,
A. J.
Millis
,
B.
Rubenstein
,
Q.
Han
, and
H.
Shi
,
Phys. Rev. B
101
,
235110
(
2020
).
50.
A.
Mahajan
and
S.
Sharma
,
Jhem. Theory Comput.
17
,
4786
(
2021
).
51.
C.-C.
Chang
,
B. M.
Rubenstein
, and
M. A.
Morales
,
Phys. Rev. B
94
,
235144
(
2016
).
52.
C.-C.
Chang
and
M. A.
Morales
, “
Multi-determinant generalized Hartree-Fock wave functions in Monte Carlo calculations
,” arXiv:1711.02154 (
2017
).
53.
M.
Cerezo
,
A.
Arrasmith
,
R.
Babbush
,
S. C.
Benjamin
,
S.
Endo
,
K.
Fujii
,
J. R.
McClean
,
K.
Mitarai
,
X.
Yuan
,
L.
Cincio
, and
P. J.
Coles
,
Nat. Rev. Phys.
3
,
625
(
2021
).
55.
J.
Romero
,
R.
Babbush
,
J. R.
McClean
,
C.
Hempel
,
P. J.
Love
, and
A.
Aspuru-Guzik
,
Quantum Sci. Technol.
4
,
014008
(
2018
).
56.
M.
Hagan
and
N.
Wiebe
, “
Composite quantum simulations
,” arXiv:2206.06409 (
2022
).
57.
W. J.
Huggins
,
J. R.
McClean
,
N. C.
Rubin
,
Z.
Jiang
,
N.
Wiebe
,
K. B.
Whaley
, and
R.
Babbush
,
npj Quantum Inf.
7
,
23
(
2021
).
58.
V.
Verteletskyi
,
T.-C.
Yen
, and
A. F.
Izmaylov
,
J. Chem. Phys.
152
,
124114
(
2020
).
59.
M. J. D.
Powell
,
Advances in Optimization and Numerical Analysis
(
Springer Netherlands
,
1994
), pp.
51
67
.
60.
J.
Stokes
,
J.
Izaac
,
N.
Killoran
, and
G.
Carleo
,
Quantum
4
,
269
(
2020
).
63.
M.
Fishman
,
S.
White
, and
E.
Stoudenmire
,
SciPost Phys. Codebases
2022
, 4.
64.
F. D.
Malone
,
A.
Mahajan
,
J. S.
Spencer
, and
J.
Lee
,
J. Chem. Theory Comput.
19
,
109
(
2023
).
65.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
et al,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2018
).
66.
C.
Developers
and
Cirq
, see full list of authors on Github: https://github.com/quantumlib/Cirq/graphs/contributors,
2022
.
68.
J. B.
Anderson
,
Int. J. Quantum Chem.
15
,
109
(
1979
).
69.
K.
Gasperich
,
M.
Deible
, and
K. D.
Jordan
,
J. Chem. Phys.
147
,
074106
(
2017
).
70.
U.
Baek
,
D.
Hait
,
J.
Shee
,
O.
Leimkuhler
,
W. J.
Huggins
,
T. F.
Stetina
,
M.
Head-Gordon
, and
K. B.
Whaley
, “
Say NO to optimization: A non-orthogonal quantum eigensolver
,” arXiv:2205.09039 (
2022
).
71.
C.
Genovese
,
A.
Meninno
, and
S.
Sorella
,
J. Chem. Phys.
150
,
084102
(
2019
).
72.
J.
Lee
,
F. D.
Malone
, and
M. A.
Morales
,
J. Chem. Theory Comput.
16
,
3019
(
2020
).
73.
J.
Shee
,
E. J.
Arthur
,
S.
Zhang
,
D. R.
Reichman
, and
R. A.
Friesner
,
J. Chem. Theory Comput.
15
,
4924
(
2019
).
74.
D.
Feller
,
K. A.
Peterson
, and
D. A.
Dixon
,
J. Chem. Phys.
129
,
204105
(
2008
).
75.
A.
Sagadevan
,
K. C.
Hwang
, and
M.-D.
Su
,
Nat. Commun.
8
,
1812
(
2017
).
77.
I.
Pibiri
,
S.
Buscemi
,
A.
Palumbo Piccionello
, and
A.
Pace
,
ChemPhotoChem
2
,
535
(
2018
).
78.
C.
Schweitzer
and
R.
Schmidt
,
Chem. Rev.
103
,
1685
(
2003
).
79.
D. A.
Singleton
,
C.
Hang
,
M. J.
Szymanski
,
M. P.
Meyer
,
A. G.
Leach
,
K. T.
Kuwata
,
J. S.
Chen
,
A.
Greer
,
C. S.
Foote
, and
K. N.
Houk
,
JACS
125
,
1319
(
2003
).
80.
C.
Triantaphylidès
,
M.
Krischke
,
F. A.
Hoeberichts
,
B.
Ksas
,
G.
Gresser
,
M.
Havaux
,
F.
Van Breusegem
, and
M. J.
Mueller
,
Plant Physiol.
148
,
960
(
2008
).
81.
M.
Davies
,
Biochem. Biophys. Res. Commun.
305
,
761
(
2003
).
83.
T.
Onishi
, “
Molecular orbital calculation of diatomic molecule
,” in
Quantum Computational Chemistry
(
Springer Singapore
,
Singapore
,
2017
), pp.
113
157
.
84.
A.
Zaichenko
,
D.
Schröder
,
J.
Janek
, and
D.
Mollenhauer
,
Chem.-Eur. J.
26
,
2395
(
2020
).
85.
J.
Gräfenstein
,
E.
Kraka
, and
D.
Cremer
,
Chem. Phys. Lett.
288
,
593
(
1998
).
86.
R.
Siebert
,
R.
Schinke
, and
M.
Bittererová
,
Phys. Chem. Chem. Phys.
3
,
1795
(
2001
).
87.
F.
Holka
,
P. G.
Szalay
,
T.
Müller
, and
V. G.
Tyuterev
,
J. Phys. Chem. A
114
,
9927
(
2010
).
88.
R.
Dawes
,
P.
Lolur
,
J.
Ma
, and
H.
Guo
,
J. Chem. Phys.
135
,
081102
(
2011
).
89.
R.
Dawes
,
P.
Lolur
,
A.
Li
,
B.
Jiang
, and
H.
Guo
,
J. Chem. Phys.
139
,
201103
(
2013
).
90.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
91.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
92.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
93.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
94.
D.
Feller
,
K. A.
Peterson
, and
J.
Grant Hill
,
J. Chem. Phys.
135
,
044102
(
2011
).
95.
F.
Zhang
and
T.
Rice
,
Phys. Rev. B
37
,
3759
(
1988
).
96.
P. A.
Lee
,
N.
Nagaosa
, and
X.-G.
Wen
,
Rev. Mod. Phys.
78
,
17
(
2006
).
97.
From the cuprate compounds to the Hubbard model
,” in
Quantum Electron Liquids and High-Tc Superconductivity
,
Lecture Notes in Physics Monographs
, edited by
J.
González
,
M. A.
Martín-Delgado
,
G.
Sierra
, and
A. H.
Vozmediano
(
Springer
,
Berlin, Heidelberg
,
1995
), pp.
127
149
.
99.
E. B.
Isaacs
and
C.
Wolverton
,
Phys. Rev. X
9
,
021042
(
2019
).
100.
C. G.
Barraclough
and
C. F.
Ng
,
Trans. Faraday Soc.
60
,
836
(
1964
).
101.
T. J.
Bastow
,
H. J.
Whitfield
, and
G. K.
Bristow
,
Phys. Lett. A
84
,
266
(
1981
).
102.
L.
Zhao
,
C. C.
Li
,
C. C.
Yang
, and
M. K.
Wu
, arXiv:1911.11453 (
2019
).
103.
L.
Zhao
,
T.-L.
Hung
,
C.-C.
Li
,
Y.-Y.
Chen
,
M.-K.
Wu
,
R. K.
Kremer
,
M. G.
Banks
,
A.
Simon
,
M.-H.
Whangbo
,
C.
Lee
,
J. S.
Kim
,
I.
Kim
, and
K. H.
Kim
,
Adv. Mater.
24
,
2469
(
2012
).
104.
J. S.
Zhang
,
Y.
Xie
,
X. Q.
Liu
,
A.
Razpopov
,
V.
Borisov
,
C.
Wang
,
J. P.
Sun
,
Y.
Cui
,
J. C.
Wang
,
X.
Ren
,
H.
Deng
,
X.
Yin
,
Y.
Ding
,
Y.
Li
,
J. G.
Cheng
,
J.
Feng
,
R.
Valentí
,
B.
Normand
, and
W.
Yu
,
Phys. Rev. Res.
2
,
013144
(
2020
).
105.
C. J.
Chen
,
A. M.
Bhanji
, and
G. R.
Russell
,
Appl. Phys. Lett.
33
,
146
(
2008
).
106.
C. J.
Chen
and
G. R.
Russell
,
Appl. Phys. Lett.
26
,
504
(
2008
).
107.
M.
Brandt
and
J. A.
Piper
, “
Improved dissociation efficiency in TE pulsed copper halide lasers
,” in
International Conference on Lasers Pages
(
1979
), pp.
380
385
.
108.
S.
Gabay
,
I.
Smilanski
,
L. A.
Levin
, and
G.
Erez
,
IEEE J. Quantum Electron.
13
,
364
(
1977
).
110.
L.
Longo
,
M. G.
Postiglione
,
O.
Marangoni
, and
M.
Melato
,
J. Clin. Laser Med. Surg.
21
,
157
(
2003
).
111.
L.
Helmholz
,
J. Am. Chem. Soc.
69
,
886
(
1947
).
112.
P.
Giannozzi
et al,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
113.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
114.
M.
van Setten
,
M.
Giantomassi
,
E.
Bousquet
,
M.
Verstraete
,
D.
Hamann
,
X.
Gonze
, and
G.-M.
Rignanese
,
Comput. Phys. Commun.
226
,
39
(
2018
).
115.
G.
Pizzi
et al,
J. Phys.: Condens. Matter
32
,
165902
(
2020
).
116.
wan2respack, https://github.com/respack-dev/wan2respack; accessed 30 September 2022.
117.
K.
Nakamura
,
Y.
Yoshimoto
,
Y.
Nomura
,
T.
Tadano
,
M.
Kawamura
,
T.
Kosugi
,
K.
Yoshimi
,
T.
Misawa
, and
Y.
Motoyama
,
Comput. Phys. Commun.
261
,
107781
(
2021
).
118.
A.
Auerbach
,
Interacting Electrons and Quantum Magnetism
(
Springer-Verlag
,
1994
).
119.
D. P.
Arovas
,
E.
Berg
,
S. A.
Kivelson
, and
S.
Raghu
,
Annu. Rev. Condens. Matter Phys.
13
,
239
(
2022
).
120.
J. P. F.
LeBlanc
et al, “
Simons collaboration on the many-electron problem
,”
Phys. Rev. X
5
,
041041
(
2015
).
121.
B.-X.
Zheng
,
C.-M.
Chung
,
P.
Corboz
,
G.
Ehlers
,
M.-P.
Qin
,
R. M.
Noack
,
H.
Shi
,
S. R.
White
,
S.
Zhang
, and
G. K.-L.
Chan
,
Science
358
,
1155
(
2017
).
122.
E. W.
Huang
,
C. B.
Mendl
,
S.
Liu
,
S.
Johnston
,
H.-C.
Jiang
,
B.
Moritz
, and
T. P.
Devereaux
,
Science
358
,
1161
(
2017
).
123.
R.
Mondaini
,
S.
Tarat
, and
R. T.
Scalettar
,
Science
375
,
418
(
2022
).
124.
M.
Qin
,
T.
Schäfer
,
S.
Andergassen
,
P.
Corboz
, and
E.
Gull
,
Annu. Rev. Condens. Matter Phys.
13
,
275
(
2022
).
125.
M. A.
Morales
,
J.
McMinis
,
B. K.
Clark
,
J.
Kim
, and
G. E.
Scuseria
,
J. Chem. Theory Comput.
8
,
2181
(
2012
).
126.
H.
Shi
,
C. A.
Jiménez-Hoyos
,
R.
Rodríguez-Guzmán
,
G. E.
Scuseria
, and
S.
Zhang
,
Phys. Rev. B
89
,
125129
(
2014
).
127.
H.
Shi
and
S.
Zhang
,
Phys. Rev. B
88
,
125132
(
2013
).
128.
M.
Qin
,
H.
Shi
, and
S.
Zhang
,
Phys. Rev. B
94
,
085103
(
2016
).
129.
D.
Wecker
,
M. B.
Hastings
, and
M.
Troyer
,
Phys. Rev. A
92
,
042303
(
2015
).
130.
R.
Blankenbecler
,
D.
Scalapino
, and
R.
Sugar
,
Phys. Rev. D
24
,
2278
(
1981
).
131.
S. R.
White
,
D. J.
Scalapino
,
R. L.
Sugar
,
E.
Loh
,
J. E.
Gubernatis
, and
R. T.
Scalettar
,
Phys. Rev. B
40
,
506
(
1989
).
132.
X.
Xu
and
Y.
Li
, “
Quantum-assisted Monte Carlo algorithms for fermions
,” arXiv:2205.14903 (
2022
).
133.
Y.
Yang
,
B.-N.
Lu
, and
Y.
Li
,
PRX Quantum
2
,
040361
(
2021
).
134.
A. D.
Bandrauk
,
J. Am. Chem. Soc.
128
,
4919
(
2006
).
135.
A. G.
Taube
and
R. J.
Bartlett
,
Int. J. Quantum Chem.
106
,
3393
(
2006
).
136.
137.
M.
Suzuki
,
Prog. Theor. Phys.
56
,
1454
(
1976
).
138.
S. B.
Bravyi
and
A. Y.
Kitaev
,
Ann. Phys.
298
,
210
(
2002
).
139.
M.
Head-Gordon
,
J. A.
Pople
, and
M. J.
Frisch
,
Chem. Phys. Lett.
153
,
503
(
1988
).
140.
M. R.
Hirsbrunner
,
D.
Chamaki
,
J. W.
Mullinax
, and
N. M.
Tubman
, “
Beyond MP2 initialization for unitary coupled cluster quantum circuits
,” arXiv:2301.05666 (
2023
).
141.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
142.
M.
Charlebois
,
J.-B.
Morée
,
K.
Nakamura
,
Y.
Nomura
,
T.
Tadano
,
Y.
Yoshimoto
,
Y.
Yamaji
,
T.
Hasegawa
,
K.
Matsuhira
, and
M.
Imada
,
Phys. Rev. B
104
,
075153
(
2021
).
143.
The LDA+DMFT Approach to Strongly Correlated Materials
, edited by
E.
Pavarini
,
E.
Koch
,
D.
Vollhardt
, and
A.
Lichtenstein
(
Forschungszentrum
,
Jülich
,
2011
).
144.
F.
Lechermann
,
A.
Georges
,
A.
Poteryaev
,
S.
Biermann
,
M.
Posternak
,
A.
Yamasaki
, and
O. K.
Andersen
,
Phys. Rev. B
74
,
125120
(
2006
).
145.
C.
Castellani
,
C. R.
Natoli
, and
J.
Ranninger
,
Phys. Rev. B
18
,
4945
(
1978
).
146.
R.
Frésard
and
G.
Kotliar
,
Phys. Rev. B
56
,
12909
(
1997
).
147.
M.
Imada
,
A.
Fujimori
, and
Y.
Tokura
,
Rev. Mod. Phys.
70
,
1039
(
1998
).
You do not currently have access to this content.