Hydrogen atom scattering on metal surfaces is investigated based on a simplified Newns–Anderson model. Both the nuclear and electronic degrees of freedom are treated quantum mechanically. By partitioning all the surface electronic states as the bath, the hierarchical equations of motion method for the fermionic bath is employed to simulate the scattering dynamics. It is found that, with a reasonable set of parameters, the main features of the recent experimental studies of hydrogen atom scattering on metal surfaces can be reproduced. Vibrational states on the chemisorption state whose energies are close to the incident energy are found to play an important role, and the scattering process is dominated by a single-pass electronic transition forth and back between the diabatic physisorption and chemisorption states. Further study on the effects of the atom-surface coupling strength reveals that, upon increasing the atom-surface coupling strength, the scattering mechanism changes from typical nonadiabatic transitions to dynamics in the electronic friction regime.

1.
A.
Nitzan
,
Chemical Dynamics in Condensed Phases
(
Oxford University Press
,
New York
,
2006
).
2.
M.
Head-Gordon
and
J. C.
Tully
, “
Molecular dynamics with electronic frictions
,”
J. Chem. Phys.
103
,
10137
10145
(
1995
).
3.
C. T.
Rettner
,
D. J.
Auerbach
,
J. C.
Tully
, and
A. W.
Kleyn
, “
Chemical dynamics at the gas–surface interface
,”
J. Phys. Chem.
100
,
13021
13033
(
1996
).
4.
K.
Golibrzuch
,
N.
Bartels
,
D. J.
Auerbach
, and
A. M.
Wodtke
, “
The dynamics of molecular interactions and chemical reactions at metal surfaces: Testing the foundations of theory
,”
Annu. Rev. Phys. Chem.
66
,
399
425
(
2015
).
5.
B.
Jiang
,
M.
Yang
,
D.
Xie
, and
H.
Guo
, “
Quantum dynamics of polyatomic dissociative chemisorption on transition metal surfaces: Mode specificity and bond selectivity
,”
Chem. Soc. Rev.
45
,
3621
3640
(
2016
).
6.
M. M.
Montemore
,
M. A.
van Spronsen
,
R. J.
Madix
, and
C. M.
Friend
, “
O2 activation by metal surfaces: Implications for bonding and reactivity on heterogeneous catalysts
,”
Chem. Rev.
118
,
2816
2862
(
2018
).
7.
S. P.
Rittmeyer
,
V. J.
Bukas
, and
K.
Reuter
, “
Energy dissipation at metal surfaces
,”
Adv. Phys.: X
3
,
1381574
(
2018
).
8.
O.
Bünermann
,
H.
Jiang
,
Y.
Dorenkamp
,
A.
Kandratsenka
,
S. M.
Janke
,
D. J.
Auerbach
, and
A. M.
Wodtke
, “
Electron–hole pair excitation determines the mechanism of hydrogen atom adsorption
,”
Science
350
,
1346
1349
(
2015
).
9.
Y.
Dorenkamp
,
H.
Jiang
,
H.
Köckert
,
N.
Hertl
,
M.
Kammler
,
S. M.
Janke
,
A.
Kandratsenka
,
A. M.
Wodtke
, and
O.
Bünermann
, “
Hydrogen collisions with transition metal surfaces: Universal electronically nonadiabatic adsorption
,”
J. Chem. Phys.
148
,
034706
(
2018
).
10.
C.
Steinsiek
,
P. R.
Shirhatti
,
J.
Geweke
,
J. A.
Lau
,
J.
Altschäffel
,
A.
Kandratsenka
,
C.
Bartels
, and
A. M.
Wodtke
, “
Translational inelasticity of NO and CO in scattering from ultrathin metallic films of Ag/Au(111)
,”
J. Phys. Chem. C
122
,
18942
18948
(
2018
).
11.
Y.
Huang
,
C. T.
Rettner
,
D. J.
Auerbach
, and
A. M.
Wodtke
, “
Vibrational promotion of electron transfer
,”
Science
290
,
111
114
(
2000
).
12.
C.
Bartels
,
R.
Cooper
,
D. J.
Auerbach
, and
A. M.
Wodtke
, “
Energy transfer at metal surfaces: The need to go beyond the electronic friction picture
,”
Chem. Sci.
2
,
1647
1655
(
2011
).
13.
S.
Kumar
,
H.
Jiang
,
M.
Schwarzer
,
A.
Kandratsenka
,
D.
Schwarzer
, and
A. M.
Wodtke
, “
Vibrational relaxation lifetime of a physisorbed molecule at a metal surface
,”
Phys. Rev. Lett.
123
,
156101
(
2019
).
14.
G.-J.
Kroes
,
A.
Gross
,
E.-J.
Baerends
,
M.
Scheffler
, and
D. A.
McCormack
, “
Quantum theory of dissociative chemisorption on metal surfaces
,”
Acc. Chem. Res.
35
,
193
200
(
2002
).
15.
B.
Gergen
,
H.
Nienhaus
,
W. H.
Weinberg
, and
E. W.
McFarland
, “
Chemically induced electronic excitations at metal surfaces
,”
Science
294
,
2521
2523
(
2001
).
16.
D.
Diesing
and
E.
Hasselbrink
, “
Chemical energy dissipation at surfaces under UHV and high pressure conditions studied using metal–insulator–metal and similar devices
,”
Chem. Soc. Rev.
45
,
3747
3755
(
2016
).
17.
A. M.
Wodtke
,
J. C.
Tully
, and
D. J.
Auerbach
, “
Electronically non-adiabatic interactions of molecules at metal surfaces: Can we trust the Born–Oppenheimer approximation for surface chemistry?
,”
Int. Rev. Phys. Chem.
23
,
513
539
(
2004
).
18.
J. D.
White
,
J.
Chen
,
D.
Matsiev
,
D. J.
Auerbach
, and
A. M.
Wodtke
, “
Conversion of large-amplitude vibration to electron excitation at a metal surface
,”
Nature
433
,
503
505
(
2005
).
19.
S.
Roy
,
N. A.
Shenvi
, and
J. C.
Tully
, “
Model Hamiltonian for the interaction of NO with the Au(111) surface
,”
J. Chem. Phys.
130
,
174716
(
2009
).
20.
N.
Shenvi
,
S.
Roy
, and
J. C.
Tully
, “
Nonadiabatic dynamics at metal surfaces: Independent-electron surface hopping
,”
J. Chem. Phys.
130
,
174107
(
2009
).
21.
N.
Shenvi
,
S.
Roy
, and
J. C.
Tully
, “
Dynamical steering and electronic excitation in NO scattering from a gold surface
,”
Science
326
,
829
832
(
2009
).
22.
S.
Li
and
H.
Guo
, “
Monte Carlo wave packet study of negative ion mediated vibrationally inelastic scattering of NO from the metal surface
,”
J. Chem. Phys.
117
,
4499
4508
(
2002
).
23.
W.
Dou
and
J. E.
Subotnik
, “
A broadened classical master equation approach for nonadiabatic dynamics at metal surfaces: Beyond the weak molecule-metal coupling limit
,”
J. Chem. Phys.
144
,
024116
(
2016
).
24.
G.
Miao
,
W.
Dou
, and
J.
Subotnik
, “
Vibrational relaxation at a metal surface: Electronic friction versus classical master equations
,”
J. Chem. Phys.
147
,
224105
(
2017
).
25.
W.
Dou
,
A.
Nitzan
, and
J. E.
Subotnik
, “
Surface hopping with a manifold of electronic states. II. Application to the many-body Anderson-Holstein model
,”
J. Chem. Phys.
142
,
084110
(
2015
).
26.
F.
Elste
,
G.
Weick
,
C.
Timm
, and
F.
von Oppen
, “
Current-induced conformational switching in single-molecule junctions
,”
Appl. Phys. A
93
,
345
354
(
2008
).
27.
V.
Krishna
and
J. C.
Tully
, “
Vibrational lifetimes of molecular adsorbates on metal surfaces
,”
J. Chem. Phys.
125
,
054706
(
2006
).
28.
W.
Dou
and
J. E.
Subotnik
, “
Perspective: How to understand electronic friction
,”
J. Chem. Phys.
148
,
230901
(
2018
).
29.
S. L.
Rudge
,
Y.
Ke
, and
M.
Thoss
, “
Current-induced forces in nanosystems: A hierarchical equations of motion approach
,”
Phys. Rev. B
107
,
115416
(
2023
).
30.
G.-J.
Kroes
, “
Frontiers in surface scattering simulations
,”
Science
321
,
794
797
(
2008
).
31.
R. J.
Maurer
,
M.
Askerka
,
V. S.
Batista
, and
J. C.
Tully
, “
Ab initio tensorial electronic friction for molecules on metal surfaces: Nonadiabatic vibrational relaxation
,”
Phys. Rev. B
94
,
115432
(
2016
).
32.
A. M.
Wodtke
, “
Electronically non-adiabatic influences in surface chemistry and dynamics
,”
Chem. Soc. Rev.
45
,
3641
3657
(
2016
).
33.
P.
Spiering
and
J.
Meyer
, “
Testing electronic friction models: Vibrational de-excitation in scattering of H2 and D2 from Cu(111)
,”
J. Phys. Chem. Lett.
9
,
1803
1808
(
2018
).
34.
R.
Martin-Barrios
,
N.
Hertl
,
O.
Galparsoro
,
A.
Kandratsenka
,
A. M.
Wodtke
, and
P.
Larrégaray
, “
H atom scattering from W(110): A benchmark for molecular dynamics with electronic friction
,”
Phys. Chem. Chem. Phys.
24
,
20813
20819
(
2022
).
35.
J. I.
Juaristi
,
M.
Alducin
,
R.
Díez Muiño
,
H. F.
Busnengo
, and
A.
Salin
, “
Role of electron-hole pair excitations in the dissociative adsorption of diatomic molecules on metal surfaces
,”
Phys. Rev. Lett.
100
,
116102
(
2008
).
36.
S. M.
Janke
,
D. J.
Auerbach
,
A. M.
Wodtke
, and
A.
Kandratsenka
, “
An accurate full-dimensional potential energy surface for H–Au(111): Importance of nonadiabatic electronic excitation in energy transfer and adsorption
,”
J. Chem. Phys.
143
,
124708
(
2015
).
37.
A.
Kandratsenka
,
H.
Jiang
,
Y.
Dorenkamp
,
S. M.
Janke
,
M.
Kammler
,
A. M.
Wodtke
, and
O.
Bünermann
, “
Unified description of H-atom–induced chemicurrents and inelastic scattering
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
680
684
(
2018
).
38.
K.
Krüger
,
Y.
Wang
,
S.
Tödter
,
F.
Debbeler
,
A.
Matveenko
,
N.
Hertl
,
X.
Zhou
,
B.
Jiang
,
H.
Guo
,
A. M.
Wodtke
, and
O.
Bünermann
, “
Hydrogen atom collisions with a semiconductor efficiently promote electrons to the conduction band
,”
Nat. Chem.
15
,
326
331
(
2023
).
39.
N.
Shenvi
,
S.
Roy
,
P.
Parandekar
, and
J.
Tully
, “
Vibrational relaxation of NO on Au(111) via electron-hole pair generation
,”
J. Chem. Phys.
125
,
154703
(
2006
).
40.
Y.
Tanimura
and
R.
Kubo
, “
Time evolution of a quantum system in contact with a nearly Gaussian-Markoffian noise bath
,”
J. Phys. Soc. Jpn.
58
,
101
114
(
1989
).
41.
Y.
Tanimura
, “
Stochastic Liouville, Langevin, Fokker–Planck, and master equation approaches to quantum dissipative systems
,”
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
42.
J.
Jin
,
S.
Welack
,
J.
Luo
,
X.-Q.
Li
,
P.
Cui
,
R.-X.
Xu
, and
Y.
Yan
, “
Dynamics of quantum dissipation systems interacting with fermion and boson grand canonical bath ensembles: Hierarchical equations of motion approach
,”
J. Chem. Phys.
126
,
134113
(
2007
).
43.
J.
Jin
,
X.
Zheng
, and
Y.
Yan
, “
Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach
,”
J. Chem. Phys.
128
,
234703
(
2008
).
44.
Z.
Li
,
N.
Tong
,
X.
Zheng
,
D.
Hou
,
J.
Wei
,
J.
Hu
, and
Y.
Yan
, “
Hierarchical Liouville-space approach for accurate and universal characterization of quantum impurity systems
,”
Phys. Rev. Lett.
109
,
266403
(
2012
).
45.
R.
Härtle
,
G.
Cohen
,
D.
Reichman
, and
A.
Millis
, “
Transport through an Anderson impurity: Current ringing, nonlinear magnetization, and a direct comparison of continuous-time quantum Monte Carlo and hierarchical quantum master equations
,”
Phys. Rev. B
92
,
085430
(
2015
).
46.
Q.
Shi
,
Y.
Xu
,
Y.
Yan
, and
M.
Xu
, “
Efficient propagation of the hierarchical equations of motion using the matrix product state method
,”
J. Chem. Phys.
148
,
174102
(
2018
).
47.
A.
Erpenbeck
,
L.
Götzendörfer
,
C.
Schinabeck
, and
M.
Thoss
, “
Hierarchical quantum master equation approach to charge transport in molecular junctions with time-dependent molecule-lead coupling strengths
,”
Eur. Phys. J.: Spec. Top.
227
,
1981
1994
(
2019
).
48.
H.-D.
Zhang
,
L.
Cui
,
H.
Gong
,
R.-X.
Xu
,
X.
Zheng
, and
Y.
Yan
, “
Hierarchical equations of motion method based on Fano spectrum decomposition for low temperature environments
,”
J. Chem. Phys.
152
,
064107
(
2020
).
49.
C.
Schinabeck
,
A.
Erpenbeck
,
R.
Härtle
, and
M.
Thoss
, “
Hierarchical quantum master equation approach to electronic-vibrational coupling in nonequilibrium transport through nanosystems
,”
Phys. Rev. B
94
,
201407
(
2016
).
50.
C.
Schinabeck
,
R.
Härtle
, and
M.
Thoss
, “
Hierarchical quantum master equation approach to electronic-vibrational coupling in nonequilibrium transport through nanosystems: Reservoir formulation and application to vibrational instabilities
,”
Phys. Rev. B
97
,
235429
(
2018
).
51.
C.
Schinabeck
and
M.
Thoss
, “
Hierarchical quantum master equation approach to current fluctuations in nonequilibrium charge transport through nanosystems
,”
Phys. Rev. B
101
,
075422
(
2020
).
52.
C.
Kaspar
,
A.
Erpenbeck
,
J.
Bätge
,
C.
Schinabeck
, and
M.
Thoss
, “
Nonadiabatic vibronic effects in single-molecule junctions: A theoretical study using the hierarchical equations of motion approach
,”
Phys. Rev. B
105
,
195435
(
2022
).
53.
A.
Erpenbeck
,
C.
Schinabeck
,
U.
Peskin
, and
M.
Thoss
, “
Current-induced bond rupture in single-molecule junctions
,”
Phys. Rev. B
97
,
235452
(
2018
).
54.
A.
Erpenbeck
and
M.
Thoss
, “
Hierarchical quantum master equation approach to vibronic reaction dynamics at metal surfaces
,”
J. Chem. Phys.
151
,
191101
(
2019
).
55.
A.
Erpenbeck
,
Y.
Ke
,
U.
Peskin
, and
M.
Thoss
, “
Current-induced dissociation in molecular junctions beyond the paradigm of vibrational heating: The role of antibonding electronic states
,”
Phys. Rev. B
102
,
195421
(
2020
).
56.
Y.
Ke
,
A.
Erpenbeck
,
U.
Peskin
, and
M.
Thoss
, “
Unraveling current-induced dissociation mechanisms in single-molecule junctions
,”
J. Chem. Phys.
154
,
234702
(
2021
).
57.
Y.
Ke
,
R.
Borrelli
, and
M.
Thoss
, “
Hierarchical equations of motion approach to hybrid fermionic and bosonic environments: Matrix product state formulation in twin space
,”
J. Chem. Phys.
156
,
194102
(
2022
).
58.
M.
Xu
,
Y.
Liu
,
K.
Song
, and
Q.
Shi
, “
A non-perturbative approach to simulate heterogeneous electron transfer dynamics: Effective mode treatment of the continuum electronic states
,”
J. Chem. Phys.
150
,
044109
(
2019
).
59.
P. W.
Anderson
, “
Localized magnetic states in metals
,”
Phys. Rev.
124
,
41
53
(
1961
).
60.
D. M.
Newns
, “
Self-consistent model of hydrogen chemisorption
,”
Phys. Rev.
178
,
1123
1135
(
1969
).
61.
W.
Schmickler
, “
A theory of adiabatic electron-transfer reactions
,”
J. Electroanal. Chem. Interfacial Electrochem.
204
,
31
43
(
1986
).
62.
W.
Schmickler
and
J.
Mohr
, “
The rate of electrochemical electron-transfer reactions
,”
J. Chem. Phys.
117
,
2867
2872
(
2002
).
63.
A.
Nitzan
, “
Electron transmission through molecules and molecular interfaces
,”
Annu. Rev. Phys. Chem.
52
,
681
750
(
2001
).
64.
W.
Dou
and
J. E.
Subotnik
, “
Electronic friction near metal surfaces: A case where molecule-metal couplings depend on nuclear coordinates
,”
J. Chem. Phys.
146
,
092304
(
2017
).
65.
R.
Härtle
,
G.
Cohen
,
D. R.
Reichman
, and
A. J.
Millis
, “
Decoherence and lead-induced interdot coupling in nonequilibrium electron transport through interacting quantum dots: A hierarchical quantum master equation approach
,”
Phys. Rev. B
88
,
235426
(
2013
).
66.
K. L.
Sebastian
, “
Electrochemical electron transfer: Accounting for electron–hole excitations in the metal electrode
,”
J. Chem. Phys.
90
,
5056
5067
(
1989
).
67.
G. D.
Mahan
,
Many-Particle Physics
(
Kluwer Academic/Plenum
,
New York
,
2000
).
68.
H.
Haug
,
A.-P.
Jauho
et al,
Quantum Kinetics in Transport and Optics of Semiconductors
(
Springer
,
2008
), Vol.
2
.
69.
M.
Pons
,
B.
Juliá-Díaz
,
A.
Polls
,
A.
Rios
, and
I.
Vidaña
, “
The Hellmann–Feynman theorem at finite temperature
,”
Am. J. Phys.
88
,
503
510
(
2020
).
70.
W.
Ouyang
,
W.
Dou
,
A.
Jain
, and
J. E.
Subotnik
, “
Dynamics of barrier crossings for the generalized Anderson–Holstein model: Beyond electronic friction and conventional surface hopping
,”
J. Chem. Theory Comput.
12
,
4178
4183
(
2016
).
71.
W.
Dou
and
J. E.
Subotnik
, “
Nonadiabatic molecular dynamics at metal surfaces
,”
J. Phys. Chem. A
124
,
757
771
(
2020
).
72.
X.
Dan
,
M.
Xu
,
Y.
Yan
, and
Q.
Shi
, “
Generalized master equation for charge transport in a molecular junction: Exact memory kernels and their high order expansion
,”
J. Chem. Phys.
156
,
134114
(
2022
).
73.
J. P.
Muscat
and
D. M.
Newns
, “
Chemisorption on metals
,”
Prog. Surf. Sci.
9
,
1
43
(
1978
).
74.
O.
Bünermann
,
A.
Kandratsenka
, and
A. M.
Wodtke
, “
Inelastic scattering of H atoms from surfaces
,”
J. Phys. Chem. A
125
,
3059
3076
(
2021
).
75.
S.
Venkatachalam
and
T.
Jacob
, “
Hydrogen adsorption on Pd-containing Au(111) bimetallic surfaces
,”
Phys. Chem. Chem. Phys.
11
,
3263
3270
(
2009
).
76.
Y.
Santiago-Rodríguez
,
J. A.
Herron
,
M. C.
Curet-Arana
, and
M.
Mavrikakis
, “
Atomic and molecular adsorption on Au(111)
,”
Surf. Sci.
627
,
57
69
(
2014
).
77.
N. E.
Christensen
and
B. O.
Seraphin
, “
Relativistic band calculation and the optical properties of gold
,”
Phys. Rev. B
4
,
3321
3344
(
1971
).
78.
M. S.
Mizielinski
,
D. M.
Bird
,
M.
Persson
, and
S.
Holloway
, “
Newns–Anderson model of chemicurrents in H/Cu and H/Ag
,”
Surf. Sci.
602
,
2617
2622
(
2008
).
79.
X.
Dan
,
M.
Xu
,
J. T.
Stockburger
,
J.
Ankerhold
, and
Q.
Shi
, “
Efficient low-temperature simulations for fermionic reservoirs with the hierarchical equations of motion method: Application to the Anderson impurity model
,”
Phys. Rev. B
107
,
195429
(
2023
).
80.
G.
Cohen
,
E. Y.
Wilner
, and
E.
Rabani
, “
Generalized projected dynamics for non-system observables of non-equilibrium quantum impurity models
,”
New J. Phys.
15
,
073018
(
2013
).
81.
Q.
Shi
,
L.
Chen
,
G.
Nan
,
R.-X.
Xu
, and
Y.
Yan
, “
Efficient hierarchical Liouville space propagator to quantum dissipative dynamics
,”
J. Chem. Phys.
130
,
084105
(
2009
).
82.
I. V.
Oseledets
, “
Tensor-train decomposition
,”
SIAM J. Sci. Comput.
33
,
2295
2317
(
2011
).
83.
B.
Popescu
and
U.
Kleinekathöfer
, “
Treatment of time-dependent effects in molecular junctions
,”
Phys. Status Solidi B
250
,
2288
2297
(
2013
).
84.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
,
3rd ed.
(
Wiley-VCH
,
Weinheim
,
2011
).
85.
J. S.
Kretchmer
and
G. K.-L.
Chan
, “
The fate of atomic spin in atomic scattering off surfaces
,”
J. Phys. Chem. Lett.
9
,
2863
2868
(
2018
).
86.
D. M.
Newns
, “
Electron-hole pair mechanism for excitation of intramolecular vibrations in molecule-surface scattering
,”
Surf. Sci.
171
,
600
614
(
1986
).
You do not currently have access to this content.