The critical micelle concentration (CMC) is a crucial parameter in understanding the self-assembly behavior of surfactants. In this study, we combine simulation and experiment to demonstrate the predictive capability of molecularly informed field theories in estimating the CMC of biologically based protein surfactants. Our simulation approach combines the relative entropy coarse-graining of small-scale atomistic simulations with large-scale field-theoretic simulations, allowing us to efficiently compute the free energy of micelle formation necessary for the CMC calculation while preserving chemistry-specific information about the underlying surfactant building blocks. We apply this methodology to a unique intrinsically disordered protein platform capable of a wide variety of tailored sequences that enable tunable micelle self-assembly. The computational predictions of the CMC closely match experimental measurements, demonstrating the potential of molecularly informed field theories as a valuable tool to investigate self-assembly in bio-based macromolecules systematically.

1.
O. G.
Mouritsen
and
K.
Jørgensen
, “
A new look at lipid-membrane structure in relation to drug research
,”
Pharm. Res.
15
,
1507
1519
(
1998
).
2.
E.
Goddard
, “
Polymer/surfactant interaction—Its relevance to detergent systems
,”
J. Am. Oil Chem. Soc.
71
,
1
16
(
1994
).
3.
M.
Singh
,
M.
Briones
,
G.
Ott
, and
D.
O’Hagan
, “
Cationic microparticles: A potent delivery system for DNA vaccines
,”
Proc. Natl. Acad. Sci. U. S. A.
97
,
811
816
(
2000
).
4.
W. C.
Blocher McTigue
and
S. L.
Perry
, “
Design rules for encapsulating proteins into complex coacervates
,”
Soft Matter
15
,
3089
3103
(
2019
).
5.
J. H.
Clint
, “
Micellization of mixed nonionic surface active agents
,”
J. Chem. Soc., Faraday Trans. 1
71
,
1327
1334
(
1975
).
6.
W. C.
Presto
and
W.
Preston
, “
Some correlating principles of detergent action
,”
J. Phys. Colloid Chem.
52
,
84
97
(
1948
).
7.
M. J.
Rosen
and
J. T.
Kunjappu
,
Surfactants and Interfacial Phenomena
(
John Wiley & Sons
,
2012
).
8.
S. A.
Sanders
and
A. Z.
Panagiotopoulos
, “
Micellization behavior of coarse grained surfactant models
,”
J. Chem. Phys.
132
,
114902
(
2010
).
9.
M.-T.
Lee
,
A.
Vishnyakov
, and
A. V.
Neimark
, “
Calculations of critical micelle concentration by dissipative particle dynamics simulations: The role of chain rigidity
,”
J. Phys. Chem. B
117
,
10304
10310
(
2013
).
10.
A.
Vishnyakov
,
M.-T.
Lee
, and
A. V.
Neimark
, “
Prediction of the critical micelle concentration of nonionic surfactants by dissipative particle dynamics simulations
,”
J. Phys. Chem. Lett.
4
,
797
802
(
2013
).
11.
A.
Jusufi
and
A. Z.
Panagiotopoulos
, “
Explicit- and implicit-solvent simulations of micellization in surfactant solutions
,”
Langmuir
31
,
3283
3292
(
2015
).
12.
A. P.
Santos
and
A. Z.
Panagiotopoulos
, “
Determination of the critical micelle concentration in simulations of surfactant systems
,”
J. Chem. Phys.
144
,
044709
(
2016
).
13.
J.
Zhou
and
A.-C.
Shi
, “
Critical micelle concentration of micelles with different geometries in diblock copolymer/homopolymer blends
,”
Macromol. Theory Simul.
20
,
690
699
(
2011
).
14.
S.
Qin
,
T.
Jin
,
R. C.
Van Lehn
, and
V. M.
Zavala
, “
Predicting critical micelle concentrations for surfactants using graph convolutional neural networks
,”
J. Phys. Chem. B
125
,
10610
10620
(
2021
).
15.
V.
Sresht
,
E. P.
Lewandowski
,
D.
Blankschtein
, and
A.
Jusufi
, “
Combined molecular dynamics simulation–molecular-thermodynamic theory framework for predicting surface tensions
,”
Langmuir
33
,
8319
8329
(
2017
).
16.
M.
Lechuga
,
M.
Fernández-Serrano
,
E.
Jurado
,
J.
Núñez-Olea
, and
F.
Ríos
, “
Acute toxicity of anionic and non-ionic surfactants to aquatic organisms
,”
Ecotoxicol. Environ. Safety
125
,
1
8
(
2016
).
17.
S. A.
Sanders
,
M.
Sammalkorpi
, and
A. Z.
Panagiotopoulos
, “
Atomistic simulations of micellization of sodium hexyl, heptyl, octyl, and nonyl sulfates
,”
J. Phys. Chem. B
116
,
2430
2437
(
2012
).
18.
F. H.
Quina
,
P. M.
Nassar
,
J. B.
Bonilha
, and
B. L.
Bales
, “
Growth of sodium dodecyl sulfate micelles with detergent concentration
,”
J. Phys. Chem.
99
,
17028
17031
(
1995
).
19.
B. L.
Bales
, “
A definition of the degree of ionization of a micelle based on its aggregation number
,”
J. Phys. Chem. B
105
,
6798
6804
(
2001
).
20.
A.
Del Regno
,
P. B.
Warren
,
D. J.
Bray
, and
R. L.
Anderson
, “
Critical micelle concentrations in surfactant mixtures and blends by simulation
,”
J. Phys. Chem. B
125
,
5983
5990
(
2021
).
21.
B.
Wen
,
B.
Bai
, and
R. G.
Larson
, “
Surfactant desorption and scission free energies for cylindrical and spherical micelles from umbrella-sampling molecular dynamics simulations
,”
J. Colloid Interface Sci.
599
,
773
784
(
2021
).
22.
R.
Becker
and
W.
Döring
, “
Kinetische behandlung der keimbildung in übersättigten dämpfen
,”
Ann. Phys.
416
,
719
752
(
1935
).
23.
J. A.
Mysona
,
A. V.
McCormick
, and
D. C.
Morse
, “
Mechanism of micelle birth and death
,”
Phys. Rev. Lett.
123
,
038003
(
2019
).
24.
E.
Aniansson
and
S. N.
Wall
, “
Kinetics of step-wise micelle association
,”
J. Phys. Chem.
78
,
1024
1030
(
1974
).
25.
M.
Nguyen
,
N.
Sherck
,
K.
Shen
,
C. E.
Edwards
,
B.
Yoo
,
S.
Köhler
,
J. C.
Speros
,
M. E.
Helgeson
,
K. T.
Delaney
,
M. S.
Shell
, and
G. H.
Fredrickson
, “
Predicting polyelectrolyte coacervation from a molecularly informed field-theoretic model
,”
Macromolecules
55
,
9868
(
2022
).
26.
V. Y.
Borue
and
I. Y.
Erukhimovich
, “
A statistical theory of globular polyelectrolyte complexes
,”
Macromolecules
23
,
3625
3632
(
1990
).
27.
K. T.
Delaney
and
G. H.
Fredrickson
, “
Theory of polyelectrolyte complexation—Complex coacervates are self-coacervates
,”
J. Chem. Phys.
146
,
224902
(
2017
).
28.
G. H.
Fredrickson
,
V.
Ganesan
, and
F.
Drolet
, “
Field-theoretic computer simulation methods for polymers and complex fluids
,”
Macromolecules
35
,
16
39
(
2002
).
29.
G. H.
Fredrickson
and
K. T.
Delaney
, “
Direct free energy evaluation of classical and quantum many-body systems via field-theoretic simulation
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2201804119
(
2022
).
30.
S. H.
Klass
,
M. J.
Smith
,
T. A.
Fiala
,
J. P.
Lee
,
A. O.
Omole
,
B.-G.
Han
,
K. H.
Downing
,
S.
Kumar
, and
M. B.
Francis
, “
Self-assembling micelles based on an intrinsically disordered protein domain
,”
J. Am. Chem. Soc.
141
,
4291
4299
(
2019
).
31.
S. H.
Klass
,
J. M.
Gleason
,
A. O.
Omole
,
B.
Onoa
,
C. J.
Bustamante
, and
M. B.
Francis
, “
Preparation of bioderived and biodegradable surfactants based on an intrinsically disordered protein sequence
,”
Biomacromolecules
23
,
1462
1470
(
2022
).
32.
J.
Xie
and
A.-C.
Shi
, “
Formation of complex spherical packing phases in diblock copolymer/homopolymer blends
,”
Giant
5
,
100043
(
2021
).
33.
Y.
Zhu
,
B.
Zheng
,
L.
Zhang
,
D.
Andelman
, and
X.
Man
, “
Formation of diblock copolymer nanoparticles: Theoretical aspects
,”
Giant
10
,
100101
(
2022
).
34.
M.
Nguyen
,
K.
Shen
,
N.
Sherck
,
S.
Köhler
,
R.
Gupta
,
K. T.
Delaney
,
M. S.
Shell
, and
G. H.
Fredrickson
, “
A molecularly informed field-theoretic study of the complexation of polycation pdadma with mixed micelles of sodium dodecyl sulfate and ethoxylated surfactants
,”
Eur. Phys. J. E
46
,
75
(
2023
).
35.
K.
Shen
,
M.
Nguyen
,
N.
Sherck
,
B.
Yoo
,
S.
Köhler
,
J.
Speros
,
K. T.
Delaney
,
M. S.
Shell
, and
G. H.
Fredrickson
, “
Predicting surfactant phase behavior with a molecularly informed field theory
,”
J. Colloid Interface Sci.
638
,
84
98
(
2023
).
36.
N.
Sherck
,
K.
Shen
,
M.
Nguyen
,
B.
Yoo
,
S.
Kohler
,
J. C.
Speros
,
K. T.
Delaney
,
M. S.
Shell
, and
G. H.
Fredrickson
, “
Molecularly informed field theories from bottom-up coarse-graining
,”
ACS Macro Lett.
10
,
576
583
(
2021
).
37.
M. S.
Shell
, “
Coarse-graining with the relative entropy
,”
Adv. Chem. Phys.
161
,
395
441
(
2016
).
38.
G. H.
Fredrickson
and
K. T.
Delaney
,
Field-Theoretic Simulations in Soft Matter and Quantum Fluids
(
Oxford University Press
,
2023
), Vol.
173
.
39.
G.
Fredrickson
et al,
The Equilibrium Theory of Inhomogeneous Polymers
(
Oxford University Press on Demand
,
2006
), Vol.
134
.
40.
J.
Mullinax
and
W.
Noid
, “
Extended ensemble approach for deriving transferable coarse-grained potentials
,”
J. Chem. Phys.
131
,
104110
(
2009
).
41.
T.
Sanyal
,
J.
Mittal
, and
M. S.
Shell
, “
A hybrid, bottom-up, structurally accurate, Gō-like coarse-grained protein model
,”
J. Chem. Phys.
151
,
044111
(
2019
).
42.
P.
Robustelli
,
S.
Piana
, and
D. E.
Shaw
, “
Developing a molecular dynamics force field for both folded and disordered protein states
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
E4758
E4766
(
2018
).
43.
P.
Eastman
,
J.
Swails
,
J. D.
Chodera
,
R. T.
McGibbon
,
Y.
Zhao
,
K. A.
Beauchamp
,
L.-P.
Wang
,
A. C.
Simmonett
,
M. P.
Harrigan
,
C. D.
Stern
et al, “
Openmm 7: Rapid development of high performance algorithms for molecular dynamics
,”
PLoS Comput. Biol.
13
,
e1005659
(
2017
).
44.
L.
Martínez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martínez
, “
Packmol: A package for building initial configurations for molecular dynamics simulations
,”
J. Comput. Chem.
30
,
2157
2164
(
2009
).
45.
S.
Izadi
,
R.
Anandakrishnan
, and
A. V.
Onufriev
, “
Building water models: A different approach
,”
J. Phys. Chem. Lett.
5
,
3863
3871
(
2014
).
46.
R.
Zana
,
H.
Levy
, and
K.
Kwetkat
, “
Mixed micellization of dimeric (gemini) surfactants and conventional surfactants. I. Mixtures of an anionic dimeric surfactant and of the nonionic surfactants C12E5 and C12E8
,”
J. Colloid Interface Sci.
197
,
370
376
(
1998
).
47.
D. R.
Perinelli
,
M.
Cespi
,
N.
Lorusso
,
G. F.
Palmieri
,
G.
Bonacucina
, and
P.
Blasi
, “
Surfactant self-assembling and critical micelle concentration: One approach fits all?
,”
Langmuir
36
,
5745
5753
(
2020
).
48.
P. J.
Flory
, “
Thermodynamics of high polymer solutions
,”
J. Chem. Phys.
9
,
660
(
1941
).
49.
M. L.
Huggins
, “
Solutions of long chain compounds
,”
J. Chem. Phys.
9
,
440
(
1941
).
50.
P.-G.
De Gennes
and
P.-G.
Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
1979
).
51.
L.
Leibler
,
H.
Orland
, and
J. C.
Wheeler
, “
Theory of critical micelle concentration for solutions of block copolymers
,”
J. Chem. Phys.
79
,
3550
3557
(
1983
).
52.
A.
Ben-Naim
and
F.
Stillinger
, “
Critical micelle concentration and the size distribution of surfactant aggregates
,”
J. Phys. Chem.
84
,
2872
2876
(
1980
).
53.
M. A.
Floriano
,
E.
Caponetti
, and
A. Z.
Panagiotopoulos
, “
Micellization in model surfactant systems
,”
Langmuir
15
,
3143
3151
(
1999
).
54.
A.
Bhattacharya
and
S.
Mahanti
, “
Energy and size fluctuations of amphiphilic aggregates in a lattice model
,”
J. Phys.: Condens. Matter
12
,
6141
(
2000
).
55.
P.
Carpena
,
J.
Aguiar
,
P.
Bernaola-Galván
, and
C.
Carnero Ruiz
, “
Problems associated with the treatment of conductivity–concentration data in surfactant solutions: simulations and experiments
,”
Langmuir
18
,
6054
6058
(
2002
).
56.
D. L.
Mobley
and
J. P.
Guthrie
, “
FreeSolv: A database of experimental and calculated hydration free energies, with input files
,”
J. Comput.-Aided Mol. Des.
28
,
711
720
(
2014
).
57.
J.
Lequieu
, “
Combining particle and field-theoretic polymer models with multi-representation simulations
,”
J. Chem. Phys.
158
,
244902
(
2023
).
58.
E. M.
Lennon
,
G. O.
Mohler
,
H. D.
Ceniceros
,
C. J.
García-Cervera
, and
G. H.
Fredrickson
, “
Numerical solutions of the complex Langevin equations in polymer field theory
,”
Multiscale Model. Simul.
6
,
1347
1370
(
2008
).

Supplementary Material

You do not currently have access to this content.