Polyrotaxanes, which consist of mechanically interlocked bonds with rings threaded onto soft polymer chains, exhibit unique mechanical properties and find applications in diverse fields. In this study, we investigate the anomalous segmental dynamics of supercooled polyrotaxane melts using coarse-grained molecular dynamics simulations. Our simulations reveal that the presence of rings effectively reduces the packing efficiency, resulting in well-contained local motion even below the glass transition temperature. We also observe variations in dynamical free volume, characterized by the Debye–Waller factor, which shows a minimum at a ring coverage of 0.1 on threading chains. Such a non-monotonic dependence on coverage shows great consistency in structural relaxation time and dynamic heterogeneity. Specifically, the high segmental mobility of threading linear chains at large coverage can be attributed to the increased dynamical free volume due to supported rigid rings. However, such anomalous segmental dynamics is limited to length scales smaller than one ring size. Beyond this characteristic length scale, the diffusion is dominated by topological constraints, which significantly reduce the mobility of polyrotaxanes and enhance the dynamic heterogeneity. These findings offer microscopic insights into the unique packing structures and anomalous segmental dynamics of supercooled polyrotaxane melts, facilitating the design of advanced materials based on mechanical interlocking polymers for various applications.

1.
L. F.
Hart
,
J. E.
Hertzog
,
P. M.
Rauscher
,
B. W.
Rawe
,
M. M.
Tranquilli
, and
S. J.
Rowan
, “
Material properties and applications of mechanically interlocked polymers
,”
Nat. Rev. Mater.
6
,
508
530
(
2021
).
2.
V.
Richards
, “
Molecular machines
,”
Nat. Chem.
8
,
1090
(
2016
).
3.
J. F.
Stoddart
, “
Mechanically interlocked molecules (MIMs)—Molecular shuttles, switches, and machines (nobel lecture)
,”
Angew. Chem., Int. Ed.
56
,
11094
11125
(
2017
).
4.
B. L.
Feringa
, “
The art of building small: From molecular switches to motors (Nobel lecture)
,”
Angew. Chem., Int. Ed.
56
,
11060
11078
(
2017
).
5.
C.-C.
Zhang
,
Y.-M.
Zhang
,
Z.-Y.
Zhang
,
X.
Wu
,
Q.
Yu
, and
Y.
Liu
, “
Photoreaction-driven two-dimensional periodic polyrotaxane-type supramolecular nanoarchitecture
,”
Chem. Commun.
55
,
8138
8141
(
2019
).
6.
J.
Paulo Coelho
,
J.
Osío Barcina
,
E.
Junquera
,
E.
Aicart
,
G.
Tardajos
,
S.
Gómez-Graña
,
P.
Cruz-Gil
,
C.
Salgado
,
P.
Díaz-Núñez
,
O.
Peña-Rodríguez
, and
A.
Guerrero-Martínez
, “
Supramolecular control over the interparticle distance in gold nanoparticle arrays by cyclodextrin polyrotaxanes
,”
Nanomaterials
8
,
168
(
2018
).
7.
S.
Uenuma
,
R.
Maeda
,
H.
Yokoyama
, and
K.
Ito
, “
Formation of isolated pseudo-polyrotaxane nanosheet consisting of α-cyclodextrin and poly(ethylene glycol)
,”
Macromolecules
52
,
3881
3887
(
2019
).
8.
B.
He
,
Y.
Lai
,
B.
He
,
Y.
Li
,
G.
Wang
,
S.
Chang
, and
Z.
Gu
, “
Supramolecular nanoparticles generated by the self-assembly of polyrotaxanes for antitumor drug delivery
,”
Int. J. Nanomed.
7
,
5249
5258
(
2012
).
9.
Y.
Ji
,
X.
Liu
,
M.
Huang
,
J.
Jiang
,
Y.-P.
Liao
,
Q.
Liu
,
C. H.
Chang
,
H.
Liao
,
J.
Lu
,
X.
Wang
,
M. J.
Spencer
, and
H.
Meng
, “
Development of self-assembled multi-arm polyrotaxanes nanocarriers for systemic plasmid delivery in vivo
,”
Biomaterials
192
,
416
428
(
2019
).
10.
J. S. W.
Seale
,
Y.
Feng
,
L.
Feng
,
R. D.
Astumian
, and
J. F.
Stoddart
, “
Polyrotaxanes and the pump paradigm
,”
Chem. Soc. Rev.
51
,
8450
8475
(
2022
).
11.
T.
Taharabaru
,
T.
Kihara
,
R.
Onodera
,
T.
Kogo
,
Y.
Wen
,
J.
Li
,
K.
Motoyama
, and
T.
Higashi
, “
Versatile delivery platform for nucleic acids, negatively charged protein drugs, and genome-editing ribonucleoproteins using a multi-step transformable polyrotaxane
,”
Mater. Today Bio
20
,
100690
(
2023
).
12.
G.-Z.
Yin
,
J.
Hobson
,
Y.
Duan
, and
D.-Y.
Wang
, “
Polyrotaxane: New generation of sustainable, ultra-flexible, form-stable and smart phase change materials
,”
Energy Storage Mater.
40
,
347
357
(
2021
).
13.
P.
Ding
,
L.
Wu
,
Z.
Lin
,
C.
Lou
,
M.
Tang
,
X.
Guo
,
H.
Guo
,
Y.
Wang
, and
H.
Yu
, “
Molecular self-assembled ether-based polyrotaxane solid electrolyte for lithium metal batteries
,”
J. Am. Chem. Soc.
145
,
1548
1556
(
2023
).
14.
K.
Mayumi
,
C.
Liu
,
Y.
Yasuda
, and
K.
Ito
, “
Softness, elasticity, and toughness of polymer networks with slide-ring cross-links
,”
Gels
7
,
91
(
2021
).
15.
Z. H.
Xie
,
M. Z.
Rong
,
M. Q.
Zhang
, and
D.
Liu
, “
Implementation of the pulley effect of polyrotaxane in transparent bulk polymer for simultaneous strengthening and toughening
,”
Macromol. Rapid Commun.
41
,
2000371
(
2020
).
16.
K.
Kato
,
A.
Ohara
,
H.
Yokoyama
, and
K.
Ito
, “
Prolonged glass transition due to topological constraints in polyrotaxanes
,”
J. Am. Chem. Soc.
141
,
12502
12506
(
2019
).
17.
K.
Kato
,
T.
Mizusawa
,
H.
Yokoyama
, and
K.
Ito
, “
Effect of topological constraint and confined motions on the viscoelasticity of polyrotaxane glass with different interactions between rings
,”
J. Phys. Chem. C
121
,
1861
1869
(
2017
).
18.
K.
Kato
,
T.
Mizusawa
,
H.
Yokoyama
, and
K.
Ito
, “
Polyrotaxane glass: Peculiar mechanics attributable to the isolated dynamics of different components
,”
J. Phys. Chem. Lett.
6
,
4043
4048
(
2015
).
19.
K.
Kato
,
T.
Mizusawa
,
A.
Ohara
, and
K.
Ito
, “
Direct enhancement of intercomponent interactions in polyrotaxane and its pronounced effects on glass state properties
,”
Chem. Commun.
57
,
12472
12475
(
2021
).
20.
K.
Kato
,
A.
Ohara
,
K.
Michishio
, and
K.
Ito
, “
Effects of ring size on the dynamics of polyrotaxane glass
,”
Macromolecules
53
,
8910
8917
(
2020
).
21.
K.
Kato
,
M.
Naito
,
K.
Ito
,
A.
Takahara
, and
K.
Kojio
, “
Freestanding tough glassy membranes produced by simple solvent casting of polyrotaxane derivatives
,”
ACS Appl. Polym. Mater.
3
,
4177
4183
(
2021
).
22.
S.
Uenuma
,
R.
Maeda
,
K.
Kato
,
K.
Mayumi
,
H.
Yokoyama
, and
K.
Ito
, “
Drastic change of mechanical properties of polyrotaxane bulk: ABA–BAB sequence change depending on ring position
,”
ACS Macro Lett.
8
,
140
144
(
2019
).
23.
K.
Kato
,
K.
Ito
, and
T.
Hoshino
, “
Fracture process of mechanically interlocked ductile glass under uniaxial tension
,”
Macromolecules
56
,
7358
7365
(
2023
).
24.
Y.
Yasuda
,
Y.
Hidaka
,
K.
Mayumi
,
T.
Yamada
,
K.
Fujimoto
,
S.
Okazaki
,
H.
Yokoyama
, and
K.
Ito
, “
Molecular dynamics of polyrotaxane in solution investigated by quasi-elastic neutron scattering and molecular dynamics simulation: Sliding motion of rings on polymer
,”
J. Am. Chem. Soc.
141
,
9655
9663
(
2019
).
25.
Y.
Yasuda
,
M.
Toda
,
K.
Mayumi
,
H.
Yokoyama
,
H.
Morita
, and
K.
Ito
, “
Sliding dynamics of ring on polymer in rotaxane: A coarse-grained molecular dynamics simulation study
,”
Macromolecules
52
,
3787
3793
(
2019
).
26.
J. H.
Mangalara
and
D. S.
Simmons
, “
Tuning polymer glass formation behavior and mechanical properties with oligomeric diluents of varying stiffness
,”
ACS Macro Lett.
4
,
1134
1138
(
2015
).
27.
F.
Vargas-Lara
,
B. A.
Pazmiño Betancourt
, and
J. F.
Douglas
, “
Influence of knot complexity on glass-formation in low molecular mass ring polymer melts
,”
J. Chem. Phys.
150
,
101103
(
2019
).
28.
F. W.
Starr
,
S.
Sastry
,
J. F.
Douglas
, and
S. C.
Glotzer
, “
What do we learn from the local geometry of glass-forming liquids?
,”
Phys. Rev. Lett.
89
,
125501
(
2002
).
29.
W.-S.
Xu
,
J. F.
Douglas
, and
Z.-Y.
Sun
, “
Polymer glass formation: Role of activation free energy, configurational entropy, and collective motion
,”
Macromolecules
54
,
3001
3033
(
2021
).
30.
W.-S.
Xu
,
J. F.
Douglas
, and
K. F.
Freed
, “
Influence of cohesive energy on the thermodynamic properties of a model glass-forming polymer melt
,”
Macromolecules
49
,
8341
8354
(
2016
).
31.
W. L.
Merling
,
J. B.
Mileski
,
J. F.
Douglas
, and
D. S.
Simmons
, “
The glass transition of a single macromolecule
,”
Macromolecules
49
,
7597
7604
(
2016
).
32.
A.
Harada
,
J.
Li
, and
M.
Kamachi
, “
Preparation and properties of inclusion complexes of polyethylene glycol with α-cyclodextrin
,”
Macromolecules
26
,
5698
5703
(
1993
).
33.
Y.-L.
Zhu
,
H.
Liu
,
Z.-W.
Li
,
H.-J.
Qian
,
G.
Milano
, and
Z.-Y.
Lu
, “
GALAMOST: GPU-accelerated large-scale molecular simulation toolkit
,”
J. Comput. Chem.
34
,
2197
2211
(
2013
).
34.
X.
Xu
,
J. F.
Douglas
, and
W.-S.
Xu
, “
Parallel emergence of rigidity and collective motion in a family of simulated glass-forming polymer fluids
,”
Macromolecules
56
,
4929
4951
(
2023
).
35.
X.
Xu
,
J. F.
Douglas
, and
W.-S.
Xu
, “
Thermodynamic–dynamic interrelations in glass-forming polymer fluids
,”
Macromolecules
55
,
8699
8722
(
2022
).
36.
D. S.
Simmons
,
M. T.
Cicerone
,
Q.
Zhong
,
M.
Tyagi
, and
J. F.
Douglas
, “
Generalized localization model of relaxation in glass-forming liquids
,”
Soft Matter
8
,
11455
(
2012
).
37.
T. Q.
McKenzie-Smith
,
J. F.
Douglas
, and
F. W.
Starr
, “
Explaining the sensitivity of polymer segmental relaxation to additive size based on the localization model
,”
Phys. Rev. Lett.
127
,
277802
(
2021
).
38.
B. A.
Pazmiño Betancourt
,
P. Z.
Hanakata
,
F. W.
Starr
, and
J. F.
Douglas
, “
Quantitative relations between cooperative motion, emergent elasticity, and free volume in model glass-forming polymer materials
,”
Proc. Natl. Acad. Sci, U. S. A.
112
,
2966
2971
(
2015
).
39.
S. C.
Glotzer
,
V. N.
Novikov
, and
T. B.
Schrøder
, “
Time-dependent, four-point density correlation function description of dynamical heterogeneity and decoupling in supercooled liquids
,”
J. Chem. Phys.
112
,
509
512
(
2000
).
40.
X.-M.
Jia
,
W.-F.
Lin
,
H.-Y.
Zhao
,
H.-J.
Qian
, and
Z.-Y.
Lu
, “
Supercooled melt structure and dynamics of single-chain nanoparticles: A computer simulation study
,”
J. Chem. Phys.
155
,
054901
(
2021
).

Supplementary Material

You do not currently have access to this content.