Gold nanoclusters have attracted significant attention due to their unique physical-chemical properties, which can be tuned by alloying with elements such as Cu, Pd, Ag, and Pt to design materials for various applications. Although Au-nanoalloys have promising applications, our atomistic understanding of the descriptors that drive their stability is far from satisfactory. To address this problem, we considered 55-atom model nanoalloys that have been synthesized by experimental techniques. Here, we combined data mining techniques for creating a large sample of representative configurations, density functional theory for performing total energy optimizations, and Spearman correlation analyses to identify the most important descriptors. Among our results, we have identified trends in core–shell formation in the AuCu and AuPd systems and an onion-like design in the AuAg system, characterized by the aggregation of gold atoms on nanocluster surfaces. These features are explained by Au’s surface energy, packing efficiency, and charge transfer mechanisms, which are enhanced by the alloys’ preference for adopting the structure of the alloying metal rather than the low-symmetry one presented by Au55. These generalizations provide insights into the interplay between electronic and structural properties in gold nanoalloys, contributing to the understanding of their stabilization mechanisms and potential applications in various fields.

1.
S.
Maity
,
D.
Bain
, and
A.
Patra
, “
An overview on the current understanding of the photophysical properties of metal nanoclusters and their potential applications
,”
Nanoscale
11
,
22685
22723
(
2019
).
2.
M. J.
Piotrowski
,
P.
Piquini
, and
J. L. F.
Da Silva
, “
Density functional theory investigation of 13-atom metal clusters
,”
Phys. Rev. B
81
,
155446
(
2010
).
3.
M.
Jager
,
R.
Schafer
, and
R. L.
Johnston
, “
First principles global optimization of metal clusters and nanoalloys
,”
Adv. Phys.: X
3
,
S100009
(
2018
).
4.
P.
Yu
,
X.
Wen
,
Y.-R.
Toh
,
X.
Ma
, and
J.
Tang
, “
Fluorescent metallic nanoclusters: Electron dynamics, structure, and applications
,”
Part. Part. Syst. Charact.
32
,
142
163
(
2014
).
5.
X.
Cai
,
G.
Li
,
W.
Hu
, and
Y.
Zhu
, “
Catalytic conversion of CO2 over atomically precise gold-based cluster catalysts
,”
ACS Catal.
12
,
10638
10653
(
2022
).
6.
T.
Zhao
,
T.
Zhou
,
Q.
Yao
,
C.
Hao
, and
X.
Chen
, “
Metal nanoclusters: Applications in environmental monitoring and cancer therapy
,”
J. Environ. Sci. Health, Part C
33
,
168
187
(
2015
).
7.
Y.
Zhao
,
D.
Sultan
,
L.
Detering
,
H.
Luehmann
, and
Y.
Liu
, “
Facile synthesis, pharmacokinetic and systemic clearance evaluation, and positron emission tomography cancer imaging of 64Cu–Au alloy nanoclusters
,”
Nanoscale
6
,
13501
13509
(
2014
).
8.
J.
Tang
,
H.
Shi
,
G.
Ma
,
L.
Luo
, and
Z.
Tang
, “
Ultrasmall Au and Ag nanoclusters for biomedical applications: A review
,”
Front. Bioeng. Biotechnol.
8
,
1019
(
2020
).
9.
X.
Kang
and
M.
Zhu
, “
Tailoring the photoluminescence of atomically precise nanoclusters
,”
Chem. Soc. Rev.
48
,
2422
2457
(
2019
).
10.
I.
Hammami
,
N. M.
Alabdallah
,
A.
Al jomaa
, and
M.
kamoun
, “
Gold nanoparticles: Synthesis properties and applications
,”
J. King Saud Univ., Sci.
33
,
101560
(
2021
).
11.
B.
Zhang
,
J.
Chen
,
Y.
Cao
,
O. J. H.
Chai
, and
J.
Xie
, “
Ligand design in ligand-protected gold nanoclusters
,”
Small
17
,
2004381
(
2021
).
12.
Y.
Zhang
,
C.
Zhang
,
C.
Xu
,
X.
Wang
,
C.
Liu
,
G. I.
Waterhouse
,
Y.
Wang
, and
H.
Yin
, “
Ultrasmall Au nanoclusters for biomedical and biosensing applications: A mini-review
,”
Talanta
200
,
432
442
(
2019
).
13.
H.
Cui
,
Z.-S.
Shao
,
Z.
Song
,
Y.-B.
Wang
, and
H.-S.
Wang
, “
Development of gold nanoclusters: From preparation to applications in the field of biomedicine
,”
J. Mater. Chem. C
8
,
14312
14333
(
2020
).
14.
X.
Jiang
,
B.
Du
,
Y.
Huang
, and
J.
Zheng
, “
Ultrasmall noble metal nanoparticles: Breakthroughs and biomedical implications
,”
Nano Today
21
,
106
125
(
2018
).
15.
Z. W.
Wang
and
R. E.
Palmer
, “
Experimental evidence for fluctuating, chiral-type Au55 clusters by direct atomic imaging
,”
Nano Lett.
12
,
5510
5514
(
2012
).
16.
J.
Liu
,
S.
Heidrich
,
J.
Liu
,
B.
Guo
,
M.
Zharnikov
,
U.
Simon
,
W.
Wenzel
, and
C.
Wöll
, “
Encapsulation of Au55 clusters within surface-supported metal–organic frameworks for catalytic reduction of 4-nitrophenol
,”
ACS Appl. Nano Mater.
4
,
522
528
(
2020
).
17.
X.-K.
Wan
,
J.-Q.
Wang
, and
Q.-M.
Wang
, “
Ligand-protected Au55 with a novel structure and remarkable CO2 electroreduction performance
,”
Angew. Chem., Int. Ed.
60
,
20748
20753
(
2021
).
18.
R.
Ferrando
,
J.
Jellinek
, and
R. L.
Johnston
, “
Nanoalloys: From theory to applications of alloy clusters and nanoparticles
,”
Chem. Rev.
108
,
845
910
(
2008
).
19.
T.
Tsukamoto
,
T.
Kambe
,
T.
Imaoka
, and
K.
Yamamoto
, “
Modern cluster design based on experiment and theory
,”
Nat. Rev. Chem.
5
,
338
347
(
2021
).
20.
X.
Kang
,
L.
Xiong
,
S.
Wang
,
Y.
Pei
, and
M.
Zhu
, “
Combining the single-atom engineering and ligand-exchange strategies: Obtaining the single-heteroatom-doped Au16Ag1(S-Adm)13 nanocluster with atomically precise structure
,”
Inorg. Chem.
57
,
335
342
(
2017
).
21.
S.
Wang
,
Q.
Li
,
X.
Kang
, and
M.
Zhu
, “
Customizing the structure, composition, and properties of alloy nanoclusters by metal exchange
,”
Acc. Chem. Res.
51
,
2784
2792
(
2018
).
22.
C.
Wang
,
H.
Cheng
,
Y.
Sun
,
Z.
Xu
,
H.
Lin
,
Q.
Lin
, and
C.
Zhang
, “
Nanoclusters prepared from a silver/gold alloy as a fluorescent probe for selective and sensitive determination of lead(II)
,”
Microchim. Acta
182
,
695
701
(
2014
).
23.
T.
Zhang
,
H.
Xu
,
S.
Xu
,
B.
Dong
,
Z.
Wu
,
X.
Zhang
,
L.
Zhang
, and
H.
Song
, “
DNA stabilized Ag–Au alloy nanoclusters and their application as sensing probes for mercury ions
,”
RSC Adv.
6
,
51609
51618
(
2016
).
24.
J.
Xu
and
L.
Shang
, “
Emerging applications of near-infrared fluorescent metal nanoclusters for biological imaging
,”
Chin. Chem. Lett.
29
,
1436
1444
(
2018
).
25.
X.
Kang
,
Y.
Li
,
M.
Zhu
, and
R.
Jin
, “
Atomically precise alloy nanoclusters: Syntheses, structures, and properties
,”
Chem. Soc. Rev.
49
,
6443
6514
(
2020
).
26.
K. E. A.
Batista
,
M. D.
Soares
,
M. G.
Quiles
,
M. J.
Piotrowski
, and
J. L. F.
Da Silva
, “
Energy decomposition to access the stability changes induced by CO adsorption on transition-metal 13-atom clusters
,”
J. Chem. Inf. Model.
61
,
2294
2301
(
2021
).
27.
F.
Orlando Morais
,
K. F.
Andriani
, and
J. L. F.
Da Silva
, “
Investigation of the stability mechanisms of eight-atom binary metal clusters using DFT calculations and k-means clustering algorithm
,”
J. Chem. Inf. Model.
61
,
3411
3420
(
2021
).
28.
L. R.
da Silva
,
F. O.
Morais
,
J. P. A.
de Mendonça
,
B. R.
Galvão
, and
J. L.
Da Silva
, “
Theoretical investigation of the stability of A55-nBn nanoalloys (A, B = Al, Cu, Zn, Ag)
,”
Comput. Mater. Sci.
215
,
111805
(
2022
).
29.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
30.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
31.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
32.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for open-shell transition metals
,”
Phys. Rev. B
48
,
13115
13118
(
1993
).
33.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
34.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
35.
M.
Dumaz
,
R.
Boucher
,
M. A. L.
Marques
, and
A. H.
Romero
, “
Authorship and citation cultural nature in Density Functional Theory from solid state computational packages
,”
Scientometrics
126
,
6681
6695
(
2021
).
36.
A.
Patra
,
J. E.
Bates
,
J.
Sun
, and
J. P.
Perdew
, “
Properties of real metallic surfaces: Effects of density functional semilocality and van der Waals nonlocality
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
E9188
(
2017
).
37.
E. M.
Flores
,
M. L.
Moreira
, and
M. J.
Piotrowski
, “
Structural and electronic properties of bulk ZnX (X = O, S, Se, Te), ZnF2, and ZnO/ZnF2: A DFT investigation within PBE, PBE+U, and hybrid HSE functionals
,”
J. Phys. Chem. A
124
,
3778
3785
(
2020
).
38.
B. R. L.
Galvão
and
L. P.
Viegas
, “
What electronic structure method can be used in the global optimization of nanoclusters?
,”
J. Phys. Chem. A
123
,
10454
10462
(
2019
).
39.
R. B.
Araujo
,
G. L. S.
Rodrigues
,
E. C.
dos Santos
, and
L. G. M.
Pettersson
, “
Adsorption energies on transition metal surfaces: Towards an accurate and balanced description
,”
Nat. Commun.
13
,
6853
(
2022
).
40.
S.
Gautier
,
S. N.
Steinmann
,
C.
Michel
,
P.
Fleurat-Lessard
, and
P.
Sautet
, “
Molecular adsorption at Pt(111). How accurate are DFT functionals?
,”
Phys. Chem. Chem. Phys.
17
,
28921
28930
(
2015
).
41.
S.
Arora
,
D. S.
Ahlawat
, and
D.
Singh
, “
DFT estimation of structural parameters and band gaps of III–V (GaP, AlP, InP, BP) and II–VI (BeX, MgX, CdX: X = O, S, Se, Te) semiconductors
,”
Pramana
97
,
103
(
2023
).
42.
K.
Basak
,
M.
Ghosh
,
S.
Chowdhury
, and
D.
Jana
, “
Theoretical studies on electronic, magnetic and optical properties of two dimensional transition metal trihalides
,”
J. Phys.: Condens. Matter
35
,
233001
(
2023
).
43.
C. N.
Singh
,
G.
Pilania
,
J.
Bárta
,
B. P.
Uberuaga
, and
X.-Y.
Liu
, “
Accurately predicting optical properties of rare-earth, aluminate scintillators: Influence of electron–hole correlation
,”
J. Mater. Chem. C
9
,
7292
7301
(
2021
).
44.
J.
Zhang
,
X.
Chen
,
M.
Deng
,
H.
Shen
,
H.
Li
, and
J.
Ding
, “
Effects of native defects and cerium impurity on the monoclinic BiVO4 photocatalyst obtained via PBE+U calculations
,”
Phys. Chem. Chem. Phys.
22
,
25297
25305
(
2020
).
45.
J.
Avelar
,
A.
Bruix
,
J.
Garza
, and
R.
Vargas
, “
van der Waals exchange-correlation functionals over bulk and surface properties of transition metals
,”
J. Phys.: Condens. Matter
31
,
315501
(
2019
).
46.
M.
Khatun
,
P.
Sarkar
,
S.
Panda
,
L. T.
Sherpa
, and
A.
Anoop
, “
Nanoclusters and nanoalloys of group 13 elements (B, Al, and Ga): Benchmarking of methods and analysis of their structures and energies
,”
Phys. Chem. Chem. Phys.
25
,
19986
20000
(
2023
).
47.
A.
Aguado
, “
Modeling the electronic and geometric structure of nanoalloys
,” in
Nanoalloys
(
Elsevier
,
2020
), pp.
75
113
.
48.
Z.
Qin
,
D.
Zhao
,
L.
Zhao
,
Q.
Xiao
,
T.
Wu
,
J.
Zhang
,
C.
Wan
, and
G.
Li
, “
Tailoring the stability, photocatalysis and photoluminescence properties of Au11 nanoclusters via doping engineering
,”
Nanoscale Adv.
1
,
2529
2536
(
2019
).
49.
M. J.
Piotrowski
,
C. G.
Ungureanu
,
P.
Tereshchuk
,
K. E. A.
Batista
,
A. S.
Chaves
,
D.
Guedes-Sobrinho
, and
J. L. F.
Da Silva
, “
Theoretical study of the structural, energetic, and electronic properties of 55-atom metal nanoclusters: A DFT investigation within van der Waals corrections, spin–orbit coupling, and PBE+U of 42 metal systems
,”
J. Phys. Chem. C
120
,
28844
28856
(
2016
).
50.
N.
Tarrat
,
M.
Rapacioli
,
J.
Cuny
,
J.
Morillo
,
J.-L.
Heully
, and
F.
Spiegelman
, “
Global optimization of neutral and charged 20- and 55-atom silver and gold clusters at the DFTB level
,”
Comput. Theor. Chem.
1107
,
102
114
(
2017
).
51.
T.
Rapps
,
R.
Ahlrichs
,
E.
Waldt
,
M. M.
Kappes
, and
D.
Schooss
, “
On the structures of 55-atom transition-metal clusters and their relationship to the crystalline bulk
,”
Angew. Chem., Int. Ed.
52
,
6102
6105
(
2013
).
52.
S.
Kohaut
,
T.
Rapps
,
K.
Fink
, and
D.
Schooss
, “
Structural evolution of palladium clusters Pd55–Pd147: Transition to the bulk
,”
J. Phys. Chem. A
123
,
10940
10946
(
2019
).
53.
D.
Nelli
,
C.
Roncaglia
, and
C.
Minnai
, “
Strain engineering in alloy nanoparticles
,”
Adv. Phys.: X
8
,
2127330
(
2022
).
54.
P. C. D.
Mendes
,
S. G.
Justo
,
J.
Mucelini
,
M. D.
Soares
,
K. E. A.
Batista
,
M. G.
Quiles
,
M. J.
Piotrowski
, and
J. L. F.
Da Silva
, “
Ab initio insights into the formation mechanisms of 55-atom Pt-based core–shell nanoalloys
,”
J. Phys. Chem. C
124
,
1158
1164
(
2020
).
55.
K. E. A.
Batista
,
J. L. F.
Da Silva
, and
M. J.
Piotrowski
, “
Ab initio investigation of the role of atomic radius in the structural formation of PtnTM55−n (TM = Y, Zr, Nb, Mo, and Tc) nanoclusters
,”
J. Phys. Chem. C
122
,
7444
7454
(
2018
).
56.
K. E. A.
Batista
,
J. L. F.
Da Silva
, and
M. J.
Piotrowski
, “
Adsorption of CO, NO, and H2 on the PdnAu55−n nanoclusters: A density functional theory investigation within the van der Waals D3 corrections
,”
J. Phys. Chem. C
123
,
7431
7439
(
2019
).
57.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
, “
Fast and accurate modeling of molecular atomization energies with machine learning
,”
Phys. Rev. Lett.
108
,
058301
(
2012
).
58.
L.
van der Maaten
and
G.
Hinton
, “
Visualizing data using t-SNE
,”
J. Mach. Learn. Res.
9
,
2579
2605
(
2008
); available at https://jmlr.org/papers/v9/vandermaaten08a.html
59.
A. S.
Chaves
,
G. G.
Rondina
,
M. J.
Piotrowski
, and
J. L. F.
Da Silva
, “
Structural formation of binary PtCu clusters: A density functional theory investigation
,”
Comput. Mater. Sci.
98
,
278
286
(
2015
).
60.
J. L. F.
Da Silva
, “
Effective coordination concept applied for phase change (GeTe)m(Sb2Te3)n compounds
,”
J. Appl. Phys.
109
,
023502
(
2011
).
61.
D.
Guedes-Sobrinho
,
R. L. H.
Freire
,
A. S.
Chaves
, and
J. L. F.
Da Silva
, “
Ab initio investigation of the role of CO adsorption on the physical properties of 55-atom PtCo nanoalloys
,”
J. Phys. Chem. C
121
,
27721
27732
(
2017
).
62.
H.
Zhen
,
L.
Liu
,
Z.
Lin
,
S.
Gao
,
X.
Li
, and
X.
Zhang
, “
Physically compatible machine learning study on the Pt–Ni nanoclusters
,”
J. Phys. Chem. Lett.
12
,
1573
1580
(
2021
).
63.
J. M.
Vasquez-Perez
,
G. U. G.
Martinez
,
A. M.
Koster
, and
P.
Calaminici
, “
The discovery of unexpected isomers in sodium heptamers by Born–Oppenheimer molecular dynamics
,”
J. Chem. Phys.
131
,
124126
(
2009
).
64.
J. M. C.
Marques
,
J. L.
Llanio-Trujillo
,
P. E.
Abreu
, and
F. B.
Pereira
, “
How different are two chemical structures?
,”
J. Chem. Inf. Model.
50
,
2129
2140
(
2010
).
65.
D.
Nelli
,
C.
Roncaglia
,
R.
Ferrando
, and
C.
Minnai
, “
Shape changes in AuPd alloy nanoparticles controlled by anisotropic surface stress relaxation
,”
J. Phys. Chem. Lett.
12
,
4609
4615
(
2021
).
66.
F.
Yin
,
Z. W.
Wang
, and
R. E.
Palmer
, “
Ageing of mass-selected Cu/Au and Au/Cu core/shell clusters probed with atomic resolution
,”
J. Exp. Nanosci.
7
,
703
710
(
2012
).
67.
T.-W.
Liao
,
A.
Yadav
,
K.-J.
Hu
,
J.
van der Tol
,
S.
Cosentino
,
F.
D’Acapito
,
R. E.
Palmer
,
C.
Lenardi
,
R.
Ferrando
,
D.
Grandjean
, and
P.
Lievens
, “
Unravelling the nucleation mechanism of bimetallic nanoparticles with composition-tunable core–shell arrangement
,”
Nanoscale
10
,
6684
6694
(
2018
).
68.
C.
Mottet
,
G.
Rossi
,
F.
Baletto
, and
R.
Ferrando
, “
Single impurity effect on the melting of nanoclusters
,”
Phys. Rev. Lett.
95
,
035501
(
2005
).
69.
E.
Panizon
,
D.
Bochicchio
,
G.
Rossi
, and
R.
Ferrando
, “
Tuning the structure of nanoparticles by small concentrations of impurities
,”
Chem. Mater.
26
,
3354
3356
(
2014
).
70.
F.
Chen
and
R. L.
Johnston
, “
Charge transfer driven surface segregation of gold atoms in 13-atom Au–Ag nanoalloys and its relevance to their structural, optical and electronic properties
,”
Acta Mater.
56
,
2374
2380
(
2008
).
71.
L.-L.
Wang
,
T. L.
Tan
, and
D. D.
Johnson
, “
Nanoalloy composition-temperature phase diagram for catalyst design: Case study of Ag-Au
,”
Phys. Rev. B
86
,
035438
(
2012
).
72.
A. L.
Gould
,
C. J.
Heard
,
A. J.
Logsdail
, and
C. R. A.
Catlow
, “
Segregation effects on the properties of (AuAg)147
,”
Phys. Chem. Chem. Phys.
16
,
21049
21061
(
2014
).
73.
D. B.
Miracle
,
D. V.
Louzguine-Luzgin
,
L. V.
Louzguina-Luzgina
, and
A.
Inoue
, “
An assessment of binary metallic glasses: Correlations between structure, glass forming ability and stability
,”
Int. Mater. Rev.
55
,
218
256
(
2010
).
74.
S.
Darby
,
T. V.
Mortimer-Jones
,
R. L.
Johnston
, and
C.
Roberts
, “
Theoretical study of Cu–Au nanoalloy clusters using a genetic algorithm
,”
J. Chem. Phys.
116
,
1536
1550
(
2002
).
75.
N. T.
Wilson
and
R. L.
Johnston
, “
A theoretical study of atom ordering in copper–gold nanoalloy clusters
,”
J. Mater. Chem.
12
,
2913
2922
(
2002
).
76.
S.
Lysgaard
,
J. S. G.
Myrdal
,
H. A.
Hansen
, and
T.
Vegge
, “
A DFT-based genetic algorithm search for AuCu nanoalloy electrocatalysts for CO2 reduction
,”
Phys. Chem. Chem. Phys.
17
,
28270
28276
(
2015
).
77.
F.
Aguilera-Granja
,
J.
Montejano-Carrizales
,
E.
Berlanga-Ramírez
, and
A.
Vega
, “
Magnetic behavior of Pd nanoclusters
,”
Physica B
354
,
271
277
(
2004
).
78.
S.
Gao
,
L.
Wang
,
H.
Li
,
Z.
Liu
,
G.
Shi
,
J.
Peng
,
B.
Wang
,
W.
Wang
, and
K.
Cho
, “
Core–shell PdAu nanocluster catalysts to suppress sulfur poisoning
,”
Phys. Chem. Chem. Phys.
23
,
15010
15019
(
2021
).
79.
M. J.
Piotrowski
,
P.
Piquini
, and
J. L. F.
Da Silva
, “
Platinum-based nanoalloys PtnTM55−n (TM = Co, Rh, Au): A density functional theory investigation
,”
J. Phys. Chem. C
116
,
18432
18439
(
2012
).

Supplementary Material

You do not currently have access to this content.