Endohedral metal–metal-bonding fullerenes have recently emerged, in which encapsulated metals form a metal–metal bond. However, the physical reasons why some metal elements prefer to form metal–metal bonds inside fullerene are still unclear. Herein, we reported first-principles calculations on electronic structures, bonding properties, dynamics, and thermodynamic stabilities of endohedral metallofullerenes M2@C82 (M = Sc, Y, La, Lu). Multiple bonding analysis approaches unambiguously reveal the existence of one two-center two-electron σ covalent metal–metal bond in M2@C82 (M = Sc, Y, Lu); however, the La–La bonding interaction in La2@C82 is weaker and could not be categorized as one metal–metal covalent bond. The energy decomposition analysis on bonding interactions between an encapsulated metal dimer and fullerene cages suggested that there exist two electron-sharing bonds between a metal dimer and fullerene cages. The reasons why La2 prefers to donate electrons to fullerene cages rather than form a standard σ covalent metal–metal bond are mainly attributed to two following facts: La2 has a lower ionization potential, while the hybridization of ns, (n − 1)d, and np atomic orbitals in La2 is higher. Ab initio molecular dynamic simulations reveal that the M–M bond length at room temperature follows the trend of Sc < Lu < Y. The statistical thermodynamics calculations at different temperatures reveal that the experimentally observed endohedral metal–metal-bonding fullerenes M2@C82 have high concentrations in the endohedral fullerene formation temperature range.

1.
G.
Frenking
and
S.
Shaik
,
The Chemical Bond: Chemical Bonding Across the Periodic Table
(
John Wiley & Sons
,
2014
).
2.
F. A.
Cotton
,
N. F.
Curtis
,
C. B.
Harris
,
B. F. G.
Johnson
,
S. J.
Lippard
,
J. T.
Mague
,
W. R.
Robinson
, and
J. S.
Wood
, “
Mononuclear and polynuclear chemistry of rhenium (III): Its pronounced homophilicity
,”
Science
145
,
1305
(
1964
).
3.
T.
Nguyen
,
A. D.
Sutton
,
M.
Brynda
,
J. C.
Fettinger
,
G. J.
Long
, and
P. P.
Power
, “
Synthesis of a stable compound with fivefold bonding between two chromium(I) centers
,”
Science
310
,
844
(
2005
).
4.
J.
Lewis
and
R. S.
Nyholm
, “
Metal–metal bonds in transition metal complexes
,”
Sci. Prog.
(1933)
52
,
577
580
(
1964
), https://www.jstor.org/stable/43426622
5.
T. L.
Sunderland
and
J. F.
Berry
, “
Metal–metal single bonds with the magnetic anisotropy of quadruple bonds: A systematic series of heterobimetallic bismuth(II)–rhodium(II) formamidinate complexes
,”
Chem. -Eur. J.
22
,
18564
(
2016
).
6.
C. D.
Delfs
and
R.
Stranger
, “
Magnetic exchange in [Mn2(μ-O)3(tmtacn)2]2+: Metal–Metal bonding or super exchange?
,”
Inorg. Chem.
39
,
491
495
(
2000
).
7.
I. G.
Powers
and
C.
Uyeda
, “
Metal–metal bonds in catalysis
,”
ACS Catal.
7
(
2
),
936
(
2017
).
8.
N. J.
Blackburn
,
M. E.
Barr
,
W. H.
Woodruff
,
J.
van der Ooost
, and
S.
de Vries
, “
Metal–metal bonding in biology: EXAFS evidence for a 2.5 .ANG. Copper–copper bond in the CuA center of cytochrome oxidase
,”
Biochemistry
33
(
34
),
10401
10407
(
1994
).
9.
P. A.
Lindahl
, “
Metal–metal bonds in biology
,”
J. Inorg. Biochem.
106
,
172
178
(
2012
).
10.
X.
Lu
,
T.
Akasaka
, and
Z.
Slanina
,
Handbook of Fullerene Science and Technology
(
Springer Nature
,
2022
).
11.
I.
Infante
,
L.
Gagliardi
, and
G. E.
Scuseria
, “
Is fullerene C60 large enough to host a multiply bonded dimetal?
,”
J. Am. Chem. Soc.
130
,
7459
(
2008
).
12.
X.
Wu
and
X.
Lu
, “
Dimetalloendofullerene U2@C60 has a U–U multiple bond consisting of sixfold one-electron-two-center bonds
,”
J. Am. Chem. Soc.
129
,
2171
(
2007
).
13.
T.
Yang
,
X.
Zhao
, and
E.
Osawa
, “
Can a metal–metal bond hop in the fullerene cage?
,”
Chem. -Eur. J.
17
,
10230
(
2011
).
14.
A. A.
Popov
,
S. M.
Avdoshenko
,
A. M.
Pendás
, and
L.
Dunsch
, “
Bonding between strongly repulsive metal atoms: An oxymoron made real in a confined space of endohedral metallofullerenes
,”
Chem. Commun.
48
,
8031
8050
(
2012
).
15.
W.
Shen
,
L.
Bao
,
Y.
Wu
,
C.
Pan
,
S.
Zhao
,
H.
Fang
,
Y.
Xie
,
P.
Jin
,
P.
Peng
,
F.-F.
Li
, and
X.
Lu
, “
Lu2@C2n (2n = 82, 84, 86): Crystallographic evidence of direct Lu–Lu bonding between two divalent lutetium ions inside fullerene cages
,”
J. Am. Chem. Soc.
139
,
9979
(
2017
).
16.
W.
Shen
,
L.
Bao
,
S.
Hu
,
L.
Yang
,
P.
Jin
,
Y.
Xie
,
T.
Akasaka
, and
X.
Lu
, “
Crystallographic characterization of Lu2C2n (2n = 76–90): Cluster selection by cage size
,”
Chem. Sci.
10
,
829
836
(
2019
).
17.
Y.
Shui
,
G.
Pei
,
P.
Zhao
,
M.
Xiong
,
S.
Li
,
M.
Ehara
, and
T.
Yang
, “
Understanding electronic structures, chemical bonding, and fluxional behavior of Lu2@C2n (2n = 76–88) by a theoretical study
,”
J. Chem. Phys.
157
,
184306
(
2022
).
18.
M.
Yamada
,
H.
Kurihara
,
M.
Suzuki
,
M.
Saito
,
Z.
Slanina
,
F.
Uhlik
,
T.
Aizawa
,
T.
Kato
,
M. M.
Olmstead
,
A. L.
Balch
,
Y.
Maeda
,
S.
Nagase
,
X.
Lu
, and
T.
Akasaka
, “
Hiding and recovering electrons in a dimetallic endohedral fullerene: Air-stable products from radical additions
,”
J. Am. Chem. Soc.
137
,
232
(
2015
).
19.
L.
Bao
,
M.
Chen
,
C.
Pan
,
T.
Yamaguchi
,
T.
Kato
,
M. M.
Olmstead
,
A. L.
Balch
,
T.
Akasaka
, and
X.
Lu
, “
Crystallographic evidence for direct metal–metal bonding in a stable open‐shell La2@Ih‐C80 derivative
,”
Angew. Chem., Int. Ed.
55
,
4242
(
2016
).
20.
F.
Liu
,
D. S.
Krylov
,
L.
Spree
,
S. M.
Avdoshenko
,
N. A.
Samoylova
,
M.
Rosenkranz
,
A.
Kostanyan
,
T.
Greber
,
A. U. B.
Wolter
,
B.
Büchner
, and
A. A.
Popov
, “
Single molecule magnet with an unpaired electron trapped between two lanthanide ions inside a fullerene
,”
Nat. Commun.
8
,
16098
(
2017
).
21.
X.
Zhang
,
Y.
Wang
,
R.
Morales-Martínez
,
J.
Zhong
,
C.
de Graaf
,
A.
Rodríguez-Fortea
,
J. M.
Poblet
,
L.
Echegoyen
,
L.
Feng
, and
N.
Chen
, “
U2@Ih(7)-C80: Crystallographic characterization of a long-sought dimetallic actinide endohedral fullerene
,”
J. Am. Chem. Soc.
140
,
3907
(
2018
).
22.
A.
Moreno-Vicente
,
Y.
Rosello
,
N.
Chen
,
L.
Echegoyen
,
P. W.
Dunk
,
A.
Rodríguez-Fortea
,
C.
de Graaf
, and
J. M.
Poblet
, “
Are U–U bonds inside fullerenes really unwilling bonds?
,”
J. Am. Chem. Soc.
145
(
12
),
6710
6718
(
2023
).
23.
S.
Hu
,
W.
Shen
,
L.
Yang
,
G.
Duan
,
P.
Jin
,
Y.
Xie
,
T.
Akasaka
, and
X.
Lu
, “
Crystallographic and theoretical investigations of Er2@C2n (2n = 82, 84, 86): Indication of distance‐dependent metal–metal bonding nature
,”
Chem. -Eur. J.
25
,
11538
11544
(
2019
).
24.
C.
Pan
,
W.
Shen
,
L.
Yang
,
L.
Bao
,
Z.
Wei
,
P.
Jin
,
H.
Fang
,
Y.
Xie
,
T.
Akasaka
, and
X.
Lu
, “
Crystallographic characterization of Y2C2n (2n = 82, 88–94): Direct Y–Y bonding and cage-dependent cluster evolution
,”
Chem. Sci.
10
,
4707
(
2019
).
25.
X.
Ge
,
X.
Dai
,
H.
Zhou
,
Z.
Yang
, and
R.
Zhou
, “
Stabilization of open-shell single bonds within endohedral metallofullerene
,”
Inorg. Chem.
59
,
3606
3618
(
2020
).
26.
Y.
Yao
,
X.
Shi
,
S.
Zheng
,
Z.
Chen
,
S.
Xie
,
R.
Huang
, and
L.
Zheng
, “
Atomically precise insights into metal–metal bonds using comparable endo-units of Sc2 and Sc2C2
,”
CCS Chem.
3
,
294
302
(
2021
).
27.
M.
Nie
,
L.
Yang
,
C.
Zhao
,
H.
Meng
,
L.
Feng
,
P.
Jin
,
C.
Wang
, and
T.
Wang
, “
A luminescent single-molecule magnet of dimetallofullerene with cage-dependent properties
,”
Nanoscale
11
,
18612
18618
(
2019
).
28.
P. M.
Felker
and
Z.
Bačić
, “
Electric-dipole-coupled H2O@C60 dimer: Translation–rotation eigenstates from twelve-dimensional quantum calculations
,”
J. Chem. Phys.
146
,
084303
(
2017
).
29.
W.
Cai
,
C.-H.
Chen
,
N.
Chen
, and
L.
Echegoyen
, “
Fullerenes as nanocontainers that stabilize unique actinide species inside: Structures, formation, and reactivity
,”
Acc. Chem. Res.
52
,
1824
1833
(
2019
).
30.
T.
Wang
and
C.
Wang
, “
Functional metallofullerene materials and their applications in nanomedicine, magnetics, and electronics
,”
Small
15
,
1901522
(
2019
).
31.
A. A.
Popov
,
S.
Yang
, and
L.
Dunsch
,
Chem. Rev.
113
,
5989
(
2013
).
32.
T.
Halverson
,
D.
Iouchtchenko
, and
P.-N.
Roy
, “
Quantifying entanglement of rotor chains using basis truncation: Application to dipolar endofullerene peapods
,”
J. Chem. Phys.
148
,
074112
(
2018
).
33.
K.
Zhang
,
C.
Wang
,
M.
Zhang
,
Z.
Bai
,
F.-F.
Xie
,
Y.-Z.
Tan
,
Y.
Guo
,
K.-J.
Hu
,
L.
Cao
,
S.
Zhang
,
X.
Tu
,
D.
Pan
,
L.
Kang
,
J.
Chen
,
P.
Wu
,
X.
Wang
,
J.
Wang
,
J.
Liu
,
Y.
Song
,
G.
Wang
,
F.
Song
,
W.
Ji
,
S.-Y.
Xie
,
S.-F.
Shi
,
M. A.
Reed
, and
B.
Wang
, “
A Gd@C82 single-molecule electret
,”
Nat. Nanotechnol.
15
,
1019
1024
(
2020
).
34.
X.
Lu
,
L.
Echegoyen
,
A. L.
Balch
,
S.
Nagase
, and
T.
Akasaka
,
Endohedral Metallofullerenes: Basics and Applications
(
CRC Press
,
2014
).
35.
P. W.
Fowler
and
D. E.
Manolopoulos
,
An Atlas of Fullerenes
(
Clarendon Press, Oxford University Press
,
Oxford, New York
,
1995
).
36.
E. D.
Glendening
,
A. E.
Reed
,
J. E.
Carpenter
, and
F.
Weinhold
,
NBO, Version 3.1
(
Theoretical Chemistry Institute, University of Wisconsin
,
Madison
,
1996
).
37.
F.
Weinhold
and
C. R.
Landis
,
Valency and Bonding: A Natural Bond Orbital Donor–Acceptor Perspective
(
Cambridge University Press
,
2005
).
38.
A. D.
Becke
and
K. E.
Edgecombe
, “
A simple measure of electron localization in atomic and molecular systems
,”
J. Chem. Phys.
92
,
5397
5403
(
1990
).
39.
D. Y.
Zubarev
and
A. I.
Boldyrev
, “
Developing paradigms of chemical bonding: Adaptive natural density partitioning
,”
Phys. Chem. Chem. Phys.
10
,
5207
(
2008
).
40.
N. V.
Tkachenko
and
A. I.
Boldyrev
, “
Chemical bonding analysis of excited states using the adaptive natural density partitioning method
,”
Phys. Chem. Chem. Phys.
21
,
9590
(
2019
).
41.
R. F. W.
Bader
, “
Atoms in molecules
,”
Acc. Chem. Res.
18
,
9
15
(
1985
).
42.
M.
Mitoraj
and
A.
Michalak
, “
Donor–acceptor properties of ligands from the natural orbitals for chemical valence
,”
Organometallics
26
,
6576
6580
(
2007
).
43.
M.
Mitoraj
and
A.
Michalak
, “
Applications of natural orbitals for chemical valence in a description of bonding in conjugated molecules
,”
J. Mol. Model.
14
,
681
687
(
2008
).
44.
M.
Mitoraj
and
A.
Michalak
, “
Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes
,”
J. Mol. Model.
13
,
347
355
(
2007
).
45.
F. M.
Bickelhaupt
,
C.
Fonseca Guerra
,
M.
Mitoraj
,
F.
Sagan
,
A.
Michalak
,
S.
Pan
, and
G.
Frenking
, “
Clarifying notes on the bonding analysis adopted by the energy decomposition analysis
,”
Phys. Chem. Chem. Phys.
24
,
15726
(
2022
).
46.
L.
Zhao
,
S.
Pan
,
N.
Holzmann
,
P.
Schwerdtfeger
, and
G.
Frenking
, “
Chemical bonding and bonding models of main-group compounds
,”
Chem. Rev.
119
,
8781
(
2019
).
47.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
48.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
).
49.
Y.
Wang
,
G.
Velkos
,
N. J.
Israel
,
M.
Rosenkranz
,
B.
Büchner
,
F.
Liu
, and
A. A.
Popov
, “
Electrophilic trifluoromethylation of dimetallofullerene anions en route to air-stable single-molecule magnets with high blocking temperature of magnetization
,”
J. Am. Chem. Soc.
143
,
18139
18149
(
2021
).
50.
N. A.
Samoylova
,
S. M.
Avdoshenko
,
D. S.
Krylov
,
H. R.
Thompson
,
A. C.
Kirkhorn
,
M.
Rosenkranz
,
S.
Schiemenz
,
F.
Ziegs
,
A. U. B.
Wolter
,
S.
Yang
,
S.
Stevenson
, and
A. A.
Popov
, “
Confining the spin between two metal atoms within the carbon cage: Redox-active metal–metal bonds in dimetallofullerenes and their stable cation radicals
,”
Nanoscale
9
,
7977
7990
(
2017
).
51.
R.
Gulde
,
P.
Pollak
, and
F.
Weigend
, “
Error-balanced segmented contracted basis sets of double-ζ to quadruple-ζ valence quality for the lanthanides
,”
J. Chem. Theory Comput.
8
(
11
),
4062
4068
(
2012
).
52.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
53.
S.
Sato
, “
On a new method of drawing the potential energy surface
,”
J. Chem. Phys.
23
,
592
593
(
1955
).
54.
M.
Douglas
and
N. M.
Kroll
, “
Quantum electrodynamical corrections to the fine structure of helium
,”
Ann. Phys.
82
,
89
155
(
1974
).
55.
B. A.
Hess
, “
Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations
,”
Phys. Rev. A
32
,
756
763
(
1985
).
56.
N. B.
Balabanov
and
K. A.
Peterson
, “
Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc–Zn
,”
J. Chem. Phys.
123
,
064107
(
2005
).
57.
Q.
Lu
and
K. A.
Peterson
, “
Correlation consistent basis sets for lanthanides: The atoms La–Lu
,”
J. Chem. Phys.
145
,
054111
(
2016
).
58.
M. J. T.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
O.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
,
GAUSSIAN09, Revision E.01
,
Gaussian Inc.
,
Wallingford CT
,
2013
.
59.
T.
Lu
and
F.
Chen
, “
Multiwfn: A multifunctional wavefunction analyzer
,”
J. Comput. Chem.
33
,
580
(
2012
).
60.
T.
Ziegler
and
A.
Rauk
, “
Carbon monoxide, carbon monosulfide, molecular nitrogen, phosphorus trifluoride, and methyl isocyanide as .sigma. donors and .pi. acceptors. A theoretical study by the Hartree–Fock–Slater transition-state method
,”
Inorg. Chem.
18
,
1755
(
1979
).
61.
E.
van Lenthe
,
E. J.
Baerends
, and
J. G.
Snijders
, “
Relativistic regular two‐component Hamiltonians
,”
J. Chem. Phys.
99
,
4597
(
1993
).
62.
F. M.
Bickelhaupt
and
E. J.
Baerends
, “
Kohn–Sham density functional theory: Predicting and understanding chemistry
,”
Rev. Comput. Chem.
15
,
1
(
2000
).
63.
G.
te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C.
Fonseca Guerra
,
S. J.
van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
, “
Chemistry with ADF
,”
J. Comput. Chem.
22
,
931
(
2001
).
64.
M.
von Hopffgarten
and
G.
Frenking
, “
Energy decomposition analysis
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
43
(
2012
).
65.
P.
Jerabek
,
H. W.
Roesky
,
G.
Bertrand
, and
G.
Frenking
, “
Coinage metals binding as main group elements: Structure and bonding of the carbene complexes [TM(cAAC)2] and [TM(cAAC)2]+ (TM = Cu, Ag, Au)
,”
J. Am. Chem. Soc.
136
,
17123
(
2014
).
66.
E. J.
Baerends
,
T.
Ziegler
,
J.
Autschbach
,
D.
Bashford
,
A.
Bérces
,
F.
Bickelhaupt
,
C.
Bo
,
P.
Boerrigter
,
L.
Cavallo
, and
D.
Chong
,
ADF 2019, SCM, Theoretical Chemistry
(
Vrije Universiteit
,
Amsterdam, the Netherlands
,
2019
).
67.
J. P.
Perdew
, “
Density-functional approximation for the correlation energy of the inhomogeneous electron gas
,”
Phys. Rev. B
33
,
8822
8824
(
1986
).
68.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
(
1988
).
69.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
154119
(
2010
).
70.
E.
Van Lenthe
and
E. J.
Baerends
, “
Optimized Slater-type basis sets for the elements 1–118
,”
J. Comput. Chem.
24
,
1142
1156
(
2003
).
71.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for open-shell transition metals
,”
Phys. Rev. B
48
,
13115
(
1993
).
72.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
73.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
74.
S.
Grimme
, “
Accurate description of van der Waals complexes by density functional theory including empirical corrections
,”
J. Comput. Chem.
25
,
1463
1473
(
2004
).
75.
S.
Grimme
, “
Semiempirical GGA-type density functional constructed with a long-range dispersion correction
,”
J. Comput. Chem.
27
,
1787
1799
(
2006
).
76.
Z.
Slanina
,
X.
Zhao
,
P.
Deota
, and
E.
Osawa
, in
Fullerenes: Chemistry, Physics, and Technology
, edited by
K. M.
Kadish
and
R. S.
Ruoff
(
John Wiley & Sons
,
New York
,
2000
), Vol.
6
, p.
283
.
77.
X.
Zhao
, “
On the structure and relative stability of C50 fullerenes
,”
J. Phys. Chem. B
109
(
11
),
5267
5272
(
2005
).
78.
T.
Yang
,
X.
Zhao
, and
S.
Nagase
, “
Di-lanthanide encapsulated into large fullerene C100: A DFT survey
,”
Phys. Chem. Chem. Phys.
13
,
5034
5037
(
2011
).
79.
T.
Yang
,
X.
Zhao
,
S. T.
Liu
, and
S.
Nagase
, “
Is the isolated pentagon rule always satisfied for metallic carbide endohedral fullerenes?
,”
Inorg. Chem.
51
(21),
11223
11225
(
2012
).
80.
T.
Yang
,
X.
Zhao
, and
S.
Nagase
, “
Quantum chemical insight of the dimetallic sulfide endohedral fullerene Sc2S@C70: Does it possess the conventional D5h cage?
,”
Chem. -Eur. J.
19
,
2649
(
2013
).
81.
K. B.
Wiberg
, “
Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane
,”
Tetrahedron
24
,
1083
1096
(
1968
).
82.
K.
Kobayashi
and
S.
Nagase
, “
Bonding features in endohedral metallofullerenes. Topological analysis of the electron density distribution
,”
Chem. Phys. Lett.
302
,
312
316
(
1999
).
83.
A. A.
Popov
and
L.
Dunsch
, “
Bonding in endohedral metallofullerenes as studied by quantum theory of atoms in molecules
,”
Chem. -Eur. J.
15
,
9707
9729
(
2009
).
84.
P.
Macchi
and
A.
Sironi
, “
Chemical bonding in transition metal carbonyl clusters: Complementary analysis of theoretical and experimental electron densities
,”
Coord. Chem. Rev.
238–239
,
383
412
(
2003
).
85.
E.
Espinosa
,
I.
Alkorta
,
J.
Elguero
, and
E.
Molins
, “
From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯F–Y systems
,”
J. Chem. Phys.
117
,
5529
5542
(
2002
).
86.
Q.
Wang
,
S.
Pan
,
Y.
Wu
,
G.
Deng
,
J.
Bian
,
G.
Wang
,
L.
Zhao
,
M.
Zhou
, and
G.
Frenking
, “
Transition‐metal chemistry of alkaline‐earth elements: The trisbenzene complexes M(Bz)3 (M = Sr, Ba)
,”
Angew. Chem., Int. Ed.
58
,
17365
(
2019
).
87.
X.
Wu
,
L.
Zhao
,
J.
Jin
,
S.
Pan
,
W.
Li
,
X.
Jin
,
G.
Wang
,
M.
Zhou
, and
G.
Frenking
, “
Observation of alkaline earth complexes M(CO)8 (M = Ca, Sr, or Ba) that mimic transition metals
,”
Science
361
,
912
916
(
2018
).
88.
L.
Zhao
,
S.
Pan
,
M.
Zhou
, and
G.
Frenking
, “
Response to Comment on ‘Observation of alkaline earth complexes M(CO)8 (M = Ca, Sr, or Ba) that mimic transition metals
,’”
Science
365
,
5021
(
2019
).
89.
T.
Yang
,
D. M.
Andrada
, and
G.
Frenking
, “
Dative versus electron-sharing bonding in N-oxides and phosphane oxides R3EO and relative energies of the R2EOR isomers (E = N, P; R = H, F, Cl, Me, Ph). A theoretical study
,”
Phys. Chem. Chem. Phys.
20
,
11856
11866
(
2018
).

Supplementary Material

You do not currently have access to this content.