While dark transitions made bright by molecular motions determine the optoelectronic properties of many materials, simulating such non-Condon effects in condensed phase spectroscopy remains a fundamental challenge. We derive a Gaussian theory to predict and analyze condensed phase optical spectra beyond the Condon limit. Our theory introduces novel quantities that encode how nuclear motions modulate the energy gap and transition dipole of electronic transitions in the form of spectral densities. By formulating the theory through a statistical framework of thermal averages and fluctuations, we circumvent the limitations of widely used microscopically harmonic theories, allowing us to tackle systems with generally anharmonic atomistic interactions and non-Condon fluctuations of arbitrary strength. We show how to calculate these spectral densities using first-principles simulations, capturing realistic molecular interactions and incorporating finite-temperature, disorder, and dynamical effects. Our theory accurately predicts the spectra of systems known to exhibit strong non-Condon effects (phenolate in various solvents) and reveals distinct mechanisms for electronic peak splitting: timescale separation of modes that tune non-Condon effects and spectral interference from correlated energy gap and transition dipole fluctuations. We further introduce analysis tools to identify how intramolecular vibrations, solute–solvent interactions, and environmental polarization effects impact dark transitions. Moreover, we prove an upper bound on the strength of cross correlated energy gap and transition dipole fluctuations, thereby elucidating a simple condition that a system must follow for our theory to accurately predict its spectrum.

1.
H.
van Amerongen
and
R.
van Grondelle
,
J. Phys. Chem. B
105
,
604
(
2001
).
2.
M.
Rivera-Torrente
,
L. D.
Mandemaker
,
M.
Filez
,
G.
Delen
,
B.
Seoane
,
F.
Meirer
, and
B. M.
Weckhuysen
,
Chem. Soc. Rev.
49
,
6694
(
2020
).
3.
H.
Rogl
,
R.
Schödel
,
H.
Lokstein
,
W.
Kühlbrandt
, and
A.
Schubert
,
Biochemistry
41
,
2281
(
2002
).
4.
J.
Suntivich
,
W. T.
Hong
,
Y.-L.
Lee
,
J. M.
Rondinelli
,
W.
Yang
,
J. B.
Goodenough
,
B.
Dabrowski
,
J. W.
Freeland
, and
Y.
Shao-Horn
,
J. Phys. Chem. C
118
,
1856
(
2014
).
5.
F.
Santoro
,
A.
Lami
,
R.
Improta
,
J.
Bloino
, and
V.
Barone
,
J. Chem. Phys.
128
,
224311
(
2008
).
6.
A.
Baiardi
,
J.
Bloino
, and
V.
Barone
,
J. Chem. Theory Comput.
9
,
4097
(
2013
).
7.
J.
Provazza
,
F.
Segatta
, and
D. F.
Coker
,
J. Chem. Theory Comput.
17
,
29
(
2020
).
8.
M.
Cho
and
G. R.
Fleming
,
J. Phys. Chem. B
124
,
11222
(
2020
).
9.
H.
Köuppel
,
W.
Domcke
, and
L.
Cederbaum
, “
Multimode molecular dynamics beyond the Born-Oppenheimer approximation
,” in
Advances in Chemical Physics
(
Wiley
,
1984
), pp.
59
246
.
10.
F. C.
Spano
,
Acc. Chem. Res.
43
,
429
(
2010
).
11.
R.
Tempelaar
and
D. R.
Reichman
,
J. Chem. Phys.
146
,
174703
(
2017
).
12.
J.
von Cosel
,
J.
Cerezo
,
D.
Kern-Michler
,
C.
Neumann
,
L. J.
van Wilderen
,
J.
Bredenbeck
,
F.
Santoro
, and
I.
Burghardt
,
J. Chem. Phys.
147
,
164116
(
2017
).
13.
S.
Kundu
,
P. P.
Roy
,
G. R.
Fleming
, and
N.
Makri
,
J. Phys. Chem. B
126
,
2899
(
2022
).
14.
A.
Marini
,
A.
Muñoz-Losa
,
A.
Biancardi
, and
B.
Mennucci
,
J. Phys. Chem. B
114
,
17128
(
2010
).
15.
M. R.
Provorse
,
T.
Peev
,
C.
Xiong
, and
C. M.
Isborn
,
J. Phys. Chem. B
120
,
12148
(
2016
).
16.
T. J.
Zuehlsdorff
,
H.
Hong
,
L.
Shi
, and
C. M.
Isborn
,
J. Phys. Chem. B
124
,
531
(
2020
).
17.
G.
Hanna
and
E.
Geva
,
J. Phys. Chem. B
112
,
12991
(
2008
).
18.
G. R.
Fleming
and
M.
Cho
,
Annu. Rev. Phys. Chem.
47
,
109
(
1996
).
19.
Y.
Tanimura
and
S.
Mukamel
,
J. Chem. Phys.
99
,
9496
(
1993
).
20.
G.
Van der Zwan
and
J. T.
Hynes
,
J. Phys. Chem.
89
,
4181
(
1985
).
21.
Y.
Lai
and
E.
Geva
,
J. Chem. Phys.
157
,
104115
(
2022
).
22.
D.
Aranda
and
F.
Santoro
,
J. Chem. Theory Comput.
17
,
1691
(
2021
).
23.
T. J.
Zuehlsdorff
,
S. V.
Shedge
,
S.-Y.
Lu
,
H.
Hong
,
V. P.
Aguirre
,
L.
Shi
, and
C. M.
Isborn
,
Annu. Rev. Phys. Chem.
72
,
165
(
2021
).
24.
M. G.
Mavros
,
D.
Hait
, and
T.
Van Voorhis
,
J. Chem. Phys.
145
,
214105
(
2016
).
25.
S.
Jang
,
M. D.
Newton
, and
R. J.
Silbey
,
Phys. Rev. Lett.
92
,
218301
(
2004
).
26.
S.
Jang
,
M. D.
Newton
, and
R. J.
Silbey
,
J. Phys. Chem. B
111
,
6807
(
2007
).
27.
L.
Chen
,
R.
Zheng
,
Q.
Shi
, and
Y.
Yan
,
J. Chem. Phys.
131
,
094502
(
2009
).
28.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234111
(
2009
).
29.
X.
Gao
,
Y.
Lai
, and
E.
Geva
,
J. Chem. Theory Comput.
16
,
6465
(
2020
).
30.
R.
Sarangi
,
K. D.
Nanda
, and
A. I.
Krylov
,
Mol. Phys.
121
,
e2148582
(
2022
).
31.
A.
Raab
,
G. A.
Worth
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
110
,
936
(
1999
).
32.
Y.
Qian
,
X.
Li
,
A. R.
Harutyunyan
,
G.
Chen
,
Y.
Rao
, and
H.
Chen
,
J. Phys. Chem. A
124
,
9156
(
2020
).
33.
J.
Schmidt
,
S.
Corcelli
, and
J.
Skinner
,
J. Chem. Phys.
123
,
044513
(
2005
).
34.
J. J.
Loparo
,
S. T.
Roberts
,
R. A.
Nicodemus
, and
A.
Tokmakoff
,
Chem. Phys.
341
,
218
(
2007
).
35.
R. S.
Czernusxewicx
,
Resonance Raman Spectroscopy of Metalloproteins Using CW Laser Excitation
(
Humana Press
,
Totowa, NJ
,
1993
), pp.
345
374
.
36.
T. G.
Spiro
,
R. S.
Czernuszewicz
, and
X.-Y.
Li
,
Coord. Chem. Rev.
100
,
541
(
1990
).
37.
R.
He
,
H.
Li
,
W.
Shen
,
Q.
Yang
, and
M.
Li
,
J. Mol. Spectrosc.
275
,
61
(
2012
).
38.
W.
Zagorec-Marks
,
J. E.
Smith
,
M. M.
Foreman
,
S.
Sharma
, and
J. M.
Weber
,
Phys. Chem. Chem. Phys.
22
,
20295
(
2020
).
39.
B.
Minaev
,
Y.-H.
Wang
,
C.-K.
Wang
,
Y.
Luo
, and
H.
Ågren
,
Spectrochim. Acta, Part A
65
,
308
(
2006
).
40.
P. P.
Roy
,
S.
Kundu
,
N.
Makri
, and
G. R.
Fleming
,
J. Phys. Chem. Lett.
13
,
7413
(
2022
).
41.
J.
Li
,
C.-K.
Lin
,
X. Y.
Li
,
C. Y.
Zhu
, and
S. H.
Lin
,
Phys. Chem. Chem. Phys.
12
,
14967
(
2010
).
42.
B.
de Souza
,
F.
Neese
, and
R.
Izsák
,
J. Chem. Phys.
148
,
034104
(
2018
).
43.
T.
Begušić
,
A.
Patoz
,
M.
Šulc
, and
J.
Vaníček
,
Chem. Phys.
515
,
152
(
2018
).
44.
D. P.
Craig
and
G. J.
Small
,
J. Chem. Phys.
50
,
3827
(
1969
).
45.
V.
Barone
,
Computational Strategies for Spectroscopy: From Small Molecules to Nano Systems
(
Wiley
,
2011
).
46.
F. J.
Avila Ferrer
,
M. D.
Davari
,
D.
Morozov
,
G.
Groenhof
, and
F.
Santoro
,
ChemPhysChem
15
,
3246
(
2014
).
47.
R.
Improta
,
F. J. A.
Ferrer
,
E.
Stendardo
, and
F.
Santoro
,
ChemPhysChem
15
,
3320
(
2014
).
48.
J.
Cerezo
,
D.
Aranda
,
F. J.
Avila Ferrer
,
G.
Prampolini
, and
F.
Santoro
,
J. Chem. Theory Comput.
16
,
1215
(
2019
).
49.
C. M.
Isborn
,
A. W.
Götz
,
M. A.
Clark
,
R. C.
Walker
, and
T. J.
Martínez
,
J. Chem. Theory Comput.
8
,
5092
(
2012
).
50.
J. M.
Milanese
,
M. R.
Provorse
,
E.
Alameda
, and
C. M.
Isborn
,
J. Chem. Theory Comput.
13
,
2159
(
2017
).
51.
R.
Crespo-Otero
and
M.
Barbatti
,
Theor. Chem. Acc.
131
,
1237
(
2012
).
52.
X.
Ge
,
I.
Timrov
,
S.
Binnie
,
A.
Biancardi
,
A.
Calzolari
, and
S.
Baroni
,
J. Phys. Chem. A
119
,
3816
(
2015
).
53.
T. J.
Zuehlsdorff
,
P. D.
Haynes
,
M. C.
Payne
, and
N. D. M.
Hine
,
J. Chem. Phys.
146
,
124504
(
2017
).
54.
A. V.
Marenich
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Phys. Chem. B
119
,
958
(
2015
).
55.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
56.
M. C.
Zwier
,
J. M.
Shorb
, and
B. P.
Krueger
,
J. Comput. Chem.
28
,
1572
(
2007
).
57.
D.
Loco
,
S.
Jurinovich
,
L.
Cupellini
,
M. F.
Menger
, and
B.
Mennucci
,
Photochem. Photobiol. Sci.
17
,
552
(
2018
).
58.
D.
Loco
and
L.
Cupellini
,
Int. J. Quantum Chem.
119
,
e25726
(
2018
).
59.
T. J.
Zuehlsdorff
,
A.
Montoya-Castillo
,
J. A.
Napoli
,
T. E.
Markland
, and
C. M.
Isborn
,
J. Chem. Phys.
151
,
074111
(
2019
).
60.
M.
Cho
,
Chem. Rev.
108
,
1331
(
2008
).
61.
W.
Zhuang
,
T.
Hayashi
, and
S.
Mukamel
,
Angew. Chem., Int. Ed.
48
,
3750
(
2009
).
62.
E.
Condon
,
Phys. Rev.
28
,
1182
(
1926
).
63.
G. J.
Small
,
J. Chem. Phys.
54
,
3300
(
1971
).
64.
M.
Toutounji
,
Chem. Phys.
521
,
25
(
2019
).
65.
J.
Liao
and
G. A.
Voth
,
J. Chem. Phys.
116
,
9174
(
2002
).
66.
W. R.
Cook
,
D. G.
Evans
, and
R. D.
Coalson
,
Chem. Phys. Lett.
420
,
362
(
2006
).
67.
J. S.
Bader
and
B.
Berne
,
J. Chem. Phys.
100
,
8359
(
1994
).
68.
S. A.
Egorov
,
K. F.
Everitt
, and
J. L.
Skinner
,
J. Phys. Chem. A
103
,
9494–
(
1999
).
69.
H.
Kim
and
P. J.
Rossky
,
J. Phys. Chem. B
106
,
8240
(
2002
).
70.
I. R.
Craig
and
D. E.
Manolopoulos
,
J. Chem. Phys.
121
,
3368
(
2004
).
71.
R.
Ramírez
,
T.
López-Ciudad
,
P.
Kumar P
, and
D.
Marx
,
J. Chem. Phys.
121
,
3973
(
2004
).
72.
P. L.
Walters
and
N.
Makri
,
J. Phys. Chem. Lett.
6
,
4959
(
2015
).
73.
J. R.
Cendagorta
,
Z.
Bačić
, and
M. E.
Tuckerman
,
J. Chem. Phys.
148
,
102340
(
2018
).
74.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
100
,
5093
(
1994
).
75.
S.
Jang
and
G. A.
Voth
,
J. Chem. Phys.
111
,
2371
(
1999
).
76.
T. E.
Markland
and
M.
Ceriotti
,
Nat. Rev. Chem.
2
,
0109
(
2018
).
77.
J.
Skinner
,
Annu. Rev. Phys. Chem.
39
,
463
(
1988
).
78.
B.
Krummheuer
,
V. M.
Axt
, and
T.
Kuhn
,
Phys. Rev. B
65
,
195313
(
2002
).
79.
A.
Auffèves
,
D.
Gerace
,
J.-M.
Gérard
,
M. F.
Santos
,
L. C.
Andreani
, and
J.-P.
Poizat
,
Phys. Rev. B
81
,
245419
(
2010
).
80.
A.
Vezvaee
,
N.
Shitara
,
S.
Sun
, and
A.
Montoya-Castillo
, arXiv:2210.00386 (
2022
).
81.

For fluorescence, the initial condition is the equilibrium distribution of molecular nuclei on the excited state PES, ρeeq=eβĤe/Trnuc[eβĤe].

82.
N.
Makri
,
J. Phys. Chem. B
103
,
2823
(
1999
).
83.
S.
Mukamel
,
J. Phys. Chem.
89
,
1077
(
1985
).
84.
Y.
Georgievskii
,
C.-P.
Hsu
, and
R.
Marcus
,
J. Chem. Phys.
110
,
5307
(
1999
).
85.
J.
Bader
,
R.
Kuharski
, and
D.
Chandler
,
J. Chem. Phys.
93
,
230
(
1990
).
86.
J.
Jortner
,
J. Chem. Phys.
64
,
4860
(
1976
).
87.
S.
Valleau
,
A.
Eisfeld
, and
A.
Aspuru-Guzik
,
J. Chem. Phys.
137
,
224103
(
2012
).
88.
G.
Mahan
,
Many-Particle Physics
,
Physics of Solids and Liquids
(
Springer US
,
1990
).
89.
M.
Cho
,
Two-dimensional Optical Spectroscopy
(
CRC Press
,
2009
).
90.
B.-X.
Xue
,
M.
Barbatti
, and
P. O.
Dral
,
J. Phys. Chem. A
124
,
7199
(
2020
).
91.
M. S.
Chen
,
T. J.
Zuehlsdorff
,
T.
Morawietz
,
C. M.
Isborn
, and
T. E.
Markland
,
J. Phys. Chem. Lett.
11
,
7559
(
2020
).
92.
E.
Cignoni
,
L.
Cupellini
, and
B.
Mennucci
,
J. Chem. Theory Comput.
19
,
965
(
2023
).
93.
M. S.
Chen
,
Y.
Mao
,
A.
Snider
,
P.
Gupta
,
A.
Montoya-Castillo
,
T. J.
Zuehlsdorff
,
C. M.
Isborn
, and
T. E.
Markland
,
J. Phys. Chem. Lett.
14
,
6610
(
2023
).
94.
J.
Huh
and
R.
Berger
,
Sci. Rep.
7
,
17561
(
2017
).
95.
Y.
Tanimura
and
S.
Mukamel
,
Phys. Rev. E
47
,
118
(
1993
).
96.
Z.-H.
Chen
,
Y.
Wang
,
R.-X.
Xu
, and
Y.
Yan
,
J. Chem. Phys.
154
,
244105
(
2021
).
97.
C.
Eckart
,
Phys. Rev.
47
,
552
(
1935
).
98.
S. V.
Krasnoshchekov
,
E. V.
Isayeva
, and
N. F.
Stepanov
,
J. Chem. Phys.
140
,
154104
(
2014
).
99.
J. M.
Antosiewicz
and
D.
Shugar
,
Biophys. Rev.
8
,
151
(
2016
).
100.
T. J.
Zuehlsdorff
,
H.
Hong
,
L.
Shi
, and
C. M.
Isborn
,
J. Chem. Phys.
153
,
044127
(
2020
).
101.
T. J.
Zuehlsdorff
,
P. D.
Haynes
,
F.
Hanke
,
M. C.
Payne
, and
N. D. M.
Hine
,
J. Chem. Theory Comput.
12
,
1853
(
2016
).
102.
Z.
Wiethorn
,
K.
Hunter
,
A.
Montoya-Castillo
, and
T.
Zuehlsdorff
, “
Symmetry breaking fluctuations split the porphyrin Q bands
,” (unpublished) (
2023
).
103.
Z. R.
Wiethorn
,
K. E.
Hunter
,
T. J.
Zuehlsdorff
, and
A.
Montoya-Castillo
, “
Publication data for ‘Beyond the Condon limit: condensed phase optical spectra from atomistic simulations
” (unpublished) (
2023
).
104.
See https://github.com/tjz21/Spectroscopy_python_code for code used to generate all correlation functions, spectral densities, and molecular spectra from atomistic simulations.

Supplementary Material

You do not currently have access to this content.