The ultrafast photoinduced electron or exciton transfer was investigated theoretically. The charge separation on the ultrafast time scale results in the unrelaxed vibrational modes that appear in the initial terms of the generalized master equations. Here, the impact of these initial terms on the electron transfer directionality in the open system was evaluated. Moreover, the role of unrelaxed vibrational modes in electron–hole separation was also examined. It was shown that the unrelaxed vibrational modes significantly increase the efficiency of electron–hole separation. This could play a crucial role in the remarkable efficiency of charge separation in biological systems.
REFERENCES
1.
L.
Zhou
et al, Science
362
, 69
(2018
).2.
C.
Clavero
, Nat. Photonics
8
, 95
(2014
).3.
H.
Tang
et al, J. Chem. Phys.
152
, 220901
(2020
).4.
H.
Cui
et al, Adv. Mater.
32
, 1908205
(2020
).5.
H.
Reddy
et al, Science
369
, 423
(2020
).6.
M.
Pudlák
, R.
Pinčák
, and E.
Bartoš
, Phys. Rev. E
105
, 064408
(2022
).7.
R.
Zwanzig
, Physica
30
, 1109
(1964
).8.
J.
Wu
and J.
Cao
, J. Chem. Phys.
139
, 044102
(2013
).9.
V. M.
Kenkre
, J. Stat. Phys.
19
, 333
(1978
).10.
11.
S.
Jang
, J. Chem. Phys.
135
, 034105
(2011
).12.
M.
Pudlak
, K. N.
Pichugin
, R. G.
Nazmitdinov
, and R.
Pincak
, Phys. Rev. E
84
, 051912
(2011
).13.
R.
Pinčák
and M.
Pudlak
, Phys. Rev. E
64
, 031906
(2001
).14.
J.
Cao
, J. Chem. Phys.
112
, 6719
(2000
).15.
S.
Jang
, J.
Cao
, and R. J.
Silbey
, J. Chem. Phys.
116
, 2705
(2002
).16.
A. J.
Nozik
, Chem. Phys. Rev.
2
, 021305
(2021
).17.
M.
Cho
, Chem. Phys. Rev.
4
, 021311
(2023
).18.
A. J.
Hoff
and J.
Deisenhofer
, Phys. Rep.
287
, 1
(1997
).19.
E.
Romero
et al, Nat. Phys.
10
, 676
(2014
).20.
M.
Mamedov
, Govinjee
, V.
Nadtochenko
, and A.
Semenov
, Photosynth. Res.
125
, 51
(2015
).21.
M.
Mohseni
, Y.
Omar
, G. S.
Engel
, and M. B.
Plenio
, Quantum Effects in Biology
(Cambridge University Press
, Cambridge
, 2014
).22.
U.
Würfel
, M.
Thorward
, and E. R.
Weber
, Semiconductors and Semimetals
(Elsevier Inc.
, Amsterdam
, 2011
), Vol. 85
.23.
K.
Timpann
, F.
Zhang
, A.
Freiberg
, and V.
Sundström
, Biochim. Biophys. Acta, Bioenerg.
1183
, 185
(1993
).24.
M.
Pudlák
and R.
Pinčák
, J. Biol. Phys.
47
, 271
(2021
).25.
M.
Pudlák
and R.
Pičák
, J. Phys. Chem. A
127
, 5795
(2023
).26.
C. A.
Rozzi
, F.
Troiani
, and I.
Tavernelli
, J. Phys.: Condens. Matter
30
, 013002
(2018
).27.
S.
Nakajima
, Prog. Theor. Phys.
20
, 948
(1958
).28.
W.
Peier
, Physica
57
, 565
(1972
).29.
M.
Sparpaglione
and S.
Mukamel
, J. Chem. Phys.
88
, 3263
(1988
).30.
M.
Pudlak
, J. Chem. Phys.
118
, 1876
(2003
).31.
R.
Englman
and J.
Jortner
, Mol. Phys.
18
, 145
(1970
).32.
V.
May
and O.
Kühn O
, Charge and Energy Transfer Dynamics in Molecular Systems
(Wiley VCH
, Weinheim
, 2011
).33.
S.
Tanaka
and R. A.
Marcus
, J. Phys. Chem. B
101
, 5031
(1997
).34.
M.
Bixon
, J.
Jortner
, and M. E.
Michel-Beyerle
, Chem. Phys.
197
, 389
(1995
).© 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.