block2 is an open source framework to implement and perform density matrix renormalization group and matrix product state algorithms. Out-of-the-box it supports the eigenstate, time-dependent, response, and finite-temperature algorithms. In addition, it carries special optimizations for ab initio electronic structure Hamiltonians and implements many quantum chemistry extensions to the density matrix renormalization group, such as dynamical correlation theories. The code is designed with an emphasis on flexibility, extensibility, and efficiency and to support integration with external numerical packages. Here, we explain the design principles and currently supported features and present numerical examples in a range of applications.

1.
S. R.
White
, “
Density matrix formulation for quantum renormalization groups
,”
Phys. Rev. Lett.
69
,
2863
(
1992
).
2.
S. R.
White
, “
Density-matrix algorithms for quantum renormalization groups
,”
Phys. Rev. B
48
,
10345
(
1993
).
3.
F.
Verstraete
,
T.
Nishino
,
U.
Schollwöck
,
M. C.
Bañuls
,
G. K.-L.
Chan
, and
M. E.
Stoudenmire
, “
Density matrix renormalization group, 30 years on
,”
Nat. Rev. Phys.
5
,
273
276
(
2023
).
4.
J.
Hachmann
,
W.
Cardoen
, and
G. K.-L.
Chan
, “
Multireference correlation in long molecules with the quadratic scaling density matrix renormalization group
,”
J. Chem. Phys.
125
,
144101
(
2006
).
5.
S.
Singh
,
H.-Q.
Zhou
, and
G.
Vidal
, “
Simulation of one-dimensional quantum systems with a global SU(2) symmetry
,”
New J. Phys.
12
,
033029
(
2010
).
6.
J. P.
LeBlanc
,
A. E.
Antipov
,
F.
Becca
,
I. W.
Bulik
,
G. K.-L.
Chan
,
C.-M.
Chung
,
Y.
Deng
,
M.
Ferrero
,
T. M.
Henderson
,
C. A.
Jiménez-Hoyos
et al, “
Solutions of the two-dimensional Hubbard model: Benchmarks and results from a wide range of numerical algorithms
,”
Phys. Rev. X
5
,
041041
(
2015
).
7.
M.
Motta
,
D. M.
Ceperley
,
G. K.-L.
Chan
,
J. A.
Gomez
,
E.
Gull
,
S.
Guo
,
C. A.
Jiménez-Hoyos
,
T. N.
Lan
,
J.
Li
,
F.
Ma
et al, “
Towards the solution of the many-electron problem in real materials: Equation of state of the hydrogen chain with state-of-the-art many-body methods
,”
Phys. Rev. X
7
,
031059
(
2017
).
8.
M.
Motta
,
C.
Genovese
,
F.
Ma
,
Z.-H.
Cui
,
R.
Sawaya
,
G. K.-L.
Chan
,
N.
Chepiga
,
P.
Helms
,
C.
Jiménez-Hoyos
,
A. J.
Millis
et al, “
Ground-state properties of the hydrogen chain: Dimerization, insulator-to-metal transition, and magnetic phases
,”
Phys. Rev. X
10
,
031058
(
2020
).
9.
J.
Hachmann
,
J. J.
Dorando
,
M.
Avilés
, and
G. K.-L.
Chan
, “
The radical character of the acenes: A density matrix renormalization group study
,”
J. Chem. Phys.
127
,
134309
(
2007
).
10.
K. H.
Marti
,
I. M.
Ondik
,
G.
Moritz
, and
M.
Reiher
, “
Density matrix renormalization group calculations on relative energies of transition metal complexes and clusters
,”
J. Chem. Phys.
128
,
014104
(
2008
).
11.
Y.
Kurashige
and
T.
Yanai
, “
High-performance ab initio density matrix renormalization group method: Applicability to large-scale multireference problems for metal compounds
,”
J. Chem. Phys.
130
,
234114
(
2009
).
12.
W.
Mizukami
,
Y.
Kurashige
, and
T.
Yanai
, “
Communication: Novel quantum states of electron spins in polycarbenes from ab initio density matrix renormalization group calculations
,”
J. Chem. Phys.
133
,
091101
(
2010
).
13.
Y.
Kurashige
,
G. K.-L.
Chan
, and
T.
Yanai
, “
Entangled quantum electronic wavefunctions of the Mn4CaO5 cluster in photosystem II
,”
Nat. Chem.
5
,
660
666
(
2013
).
14.
T. V.
Harris
,
Y.
Kurashige
,
T.
Yanai
, and
K.
Morokuma
, “
Ab initio density matrix renormalization group study of magnetic coupling in dinuclear iron and chromium complexes
,”
J. Chem. Phys.
140
,
054303
(
2014
).
15.
S.
Sharma
,
K.
Sivalingam
,
F.
Neese
, and
G. K.-L.
Chan
, “
Low-energy spectrum of iron–sulfur clusters directly from many-particle quantum mechanics
,”
Nat. Chem.
6
,
927
933
(
2014
).
16.
J.
Chalupsky
,
T. A.
Rokob
,
Y.
Kurashige
,
T.
Yanai
,
E. I.
Solomon
,
L.
Rulíšek
, and
M.
Srnec
, “
Reactivity of the binuclear non-heme iron active site of Δ9 desaturase studied by large-scale multireference ab initio calculations
,”
J. Am. Chem. Soc.
136
,
15977
15991
(
2014
).
17.
Z.
Li
,
S.
Guo
,
Q.
Sun
, and
G. K.-L.
Chan
, “
Electronic landscape of the P-cluster of nitrogenase as revealed through many-electron quantum wavefunction simulations
,”
Nat. Chem.
11
,
1026
1033
(
2019
).
18.
H. R.
Larsson
,
H.
Zhai
,
C. J.
Umrigar
, and
G. K.-L.
Chan
, “
The chromium dimer: Closing a chapter of quantum chemistry
,”
J. Am. Chem. Soc.
144
,
15932
15937
(
2022
).
19.
L.-H.
Frahm
and
D.
Pfannkuche
, “
Ultrafast ab initio quantum chemistry using matrix product states
,”
J. Chem. Theory Comput.
15
,
2154
2165
(
2019
).
20.
A.
Baiardi
, “
Electron dynamics with the time-dependent density matrix renormalization group
,”
J. Chem. Theory Comput.
17
,
3320
3334
(
2021
).
21.
Z.
Li
,
J.
Li
,
N. S.
Dattani
,
C.
Umrigar
, and
G. K.-L.
Chan
, “
The electronic complexity of the ground-state of the femo cofactor of nitrogenase as relevant to quantum simulations
,”
J. Chem. Phys.
150
,
024302
(
2019
).
22.
S.
Lee
,
J.
Lee
,
H.
Zhai
,
Y.
Tong
,
A. M.
Dalzell
,
A.
Kumar
,
P.
Helms
,
J.
Gray
,
Z.-H.
Cui
,
W.
Liu
et al, “
Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry
,”
Nat. Commun.
14
,
1952
(
2023
).
23.
G. K.-L.
Chan
and
S.
Sharma
, “
The density matrix renormalization group in quantum chemistry
,”
Annu. Rev. Phys. Chem.
62
,
465
481
(
2011
).
24.
S.
Wouters
and
D.
Van Neck
, “
The density matrix renormalization group for ab initio quantum chemistry
,”
Eur. Phys. J. D
68
,
272
(
2014
).
25.
A.
Baiardi
and
M.
Reiher
, “
The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges
,”
J. Chem. Phys.
152
,
040903
(
2020
).
26.
T.
Yanai
,
Y.
Kurashige
,
W.
Mizukami
,
J.
Chalupský
,
T. N.
Lan
, and
M.
Saitow
, “
Density matrix renormalization group for ab initio calculations and associated dynamic correlation methods: A review of theory and applications
,”
Int. J. Quantum Chem.
115
,
283
299
(
2015
).
27.
Y.
Cheng
,
Z.
Xie
, and
H.
Ma
, “
Post-density matrix renormalization group methods for describing dynamic electron correlation with large active spaces
,”
J. Phys. Chem. Lett.
13
,
904
915
(
2022
).
28.
A. E.
Feiguin
and
S. R.
White
, “
Finite-temperature density matrix renormalization using an enlarged Hilbert space
,”
Phys. Rev. B
72
,
220401
(
2005
).
29.
E.
Stoudenmire
and
S. R.
White
, “
Minimally entangled typical thermal state algorithms
,”
New J. Phys.
12
,
055026
(
2010
).
30.
M.
Roemelt
, “
Spin orbit coupling for molecular ab initio density matrix renormalization group calculations: Application to g-tensors
,”
J. Chem. Phys.
143
,
044112
(
2015
).
31.
A. E.
Feiguin
and
S. R.
White
, “
Time-step targeting methods for real-time dynamics using the density matrix renormalization group
,”
Phys. Rev. B
72
,
020404
(
2005
).
32.
E.
Jeckelmann
, “
Dynamical density-matrix renormalization-group method
,”
Phys. Rev. B
66
,
045114
(
2002
).
33.
M.
Fishman
,
S.
White
, and
E.
Stoudenmire
, “
The itensor software library for tensor network calculations
,”
SciPost Phys. Codebases
004
,
4
(
2022
).
34.
G. K.-L.
Chan
and
M.
Head-Gordon
, “
Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group
,”
J. Chem. Phys.
116
,
4462
4476
(
2002
).
35.
S.
Sharma
and
G. K.-L.
Chan
, “
Spin-adapted density matrix renormalization group algorithms for quantum chemistry
,”
J. Chem. Phys.
136
,
124121
(
2012
).
36.
Ö.
Legeza
,
J.
Röder
, and
B.
Hess
, “
Controlling the accuracy of the density-matrix renormalization-group method: The dynamical block state selection approach
,”
Phys. Rev. B
67
,
125114
(
2003
).
37.
K.
Boguslawski
,
P.
Tecmer
,
G.
Barcza
,
O.
Legeza
, and
M.
Reiher
, “
Orbital entanglement in bond-formation processes
,”
J. Chem. Theory Comput.
9
,
2959
2973
(
2013
).
38.
H.-G.
Luo
,
M.-P.
Qin
, and
T.
Xiang
, “
Optimizing Hartree-Fock orbitals by the density-matrix renormalization group
,”
Phys. Rev. B
81
,
235129
(
2010
).
39.
S.
Wouters
,
W.
Poelmans
,
P. W.
Ayers
, and
D.
Van Neck
, “
CheMPS2: A free open-source spin-adapted implementation of the density matrix renormalization group for ab initio quantum chemistry
,”
Comput. Phys. Commun.
185
,
1501
1514
(
2014
).
40.
S.
Keller
,
M.
Dolfi
,
M.
Troyer
, and
M.
Reiher
, “
An efficient matrix product operator representation of the quantum chemical Hamiltonian
,”
J. Chem. Phys.
143
,
244118
(
2015
).
41.
S.
Keller
and
M.
Reiher
, “
Spin-adapted matrix product states and operators
,”
J. Chem. Phys.
144
,
134101
(
2016
).
42.
Z.
Li
and
G. K.-L.
Chan
, “
Spin-projected matrix product states: Versatile tool for strongly correlated systems
,”
J. Chem. Theory Comput.
13
,
2681
2695
(
2017
).
43.
J.
Brabec
,
J.
Brandejs
,
K.
Kowalski
,
S.
Xantheas
,
Ö.
Legeza
, and
L.
Veis
, “
Massively parallel quantum chemical density matrix renormalization group method
,”
J. Comput. Chem.
42
,
534
544
(
2021
).
44.
Z.
Xie
,
Y.
Song
,
F.
Peng
,
J.
Li
,
Y.
Cheng
,
L.
Zhang
,
Y.
Ma
,
Y.
Tian
,
Z.
Luo
, and
H.
Ma
, “
Kylin 1.0: An ab-initio density matrix renormalization group quantum chemistry program
,”
J. Comput. Chem.
44
,
1316
1328
(
2023
).
45.
Software code:
H.
Zhai
,
H. R.
Larsson
,
S.
Lee
, and
Z.-H.
Cui
(
2023
). “
block2: Efficient MPO implementation of quantum chemistry DMRG
,”
Github
. https://github.com/block-hczhai/block2-preview.
46.
D.
Zgid
and
M.
Nooijen
, “
On the spin and symmetry adaptation of the density matrix renormalization group method
,”
J. Chem. Phys.
128
,
014107
(
2008
).
47.
S.
Sharma
, “
A general non-abelian density matrix renormalization group algorithm with application to the C2 dimer
,”
J. Chem. Phys.
142
,
024107
(
2015
).
48.
Z.
Li
, “
Time-reversal symmetry adaptation in relativistic density matrix renormalization group algorithm
,”
J. Chem. Phys.
158
,
044119
(
2023
).
49.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
et al, “
PySCF: The python-based simulations of chemistry framework
,”
WIREs Comput. Mol. Sci.
8
,
e1340
(
2018
).
50.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z. H.
Cui
et al, “
Recent developments in the PySCF program package
,”
J. Chem. Phys.
153
,
024109
(
2020
).
51.
T.
Xiang
, “
Density-matrix renormalization-group method in momentum space
,”
Phys. Rev. B
53
,
R10445
(
1996
).
52.
S.
Zhang
, “
SO(4) symmetry of the Hubbard model and its experimental consequences
,”
Int. J. Mod. Phys. B
05
,
153
168
(
1991
).
53.
I. P.
McCulloch
and
M.
Gulácsi
, “
The non-Abelian density matrix renormalization group algorithm
,”
Europhys. Lett.
57
,
852
(
2002
).
54.
C.
Xiang
,
W.
Jia
,
W.-H.
Fang
, and
Z.
Li
, “
A distributed multi-GPU ab initio density matrix renormalization group algorithm with applications to the P-cluster of nitrogenase
,” arXiv:2311.02854 (
2023
).
55.
H.
Zhai
,
S.
Lee
,
Z.-H.
Cui
,
L.
Cao
,
U.
Ryde
, and
G. K.-L.
Chan
, “
Multireference protonation energetics of a dimeric model of nitrogenase iron-sulfur clusters
,”
J. Phys. Chem. A
127
,
9974
9984
(
2023
).
56.
S. R.
White
, “
Density matrix renormalization group algorithms with a single center site
,”
Phys. Rev. B
72
,
180403
(
2005
).
57.
C.
Hubig
,
I. P.
McCulloch
,
U.
Schollwöck
, and
F. A.
Wolf
, “
Strictly single-site dmrg algorithm with subspace expansion
,”
Phys. Rev. B
91
,
155115
(
2015
).
58.
H. R.
Larsson
,
H.
Zhai
,
K.
Gunst
, and
G. K.-L.
Chan
, “
Matrix product states with large sites
,”
J. Chem. Theory Comput.
18
,
749
762
(
2022
).
59.
J. J.
Dorando
,
J.
Hachmann
, and
G. K.-L.
Chan
, “
Targeted excited state algorithms
,”
J. Chem. Phys.
127
,
084109
(
2007
).
60.
Software code:
S.
Sharma
and
G. K.-L.
Chan
(
2023
). “
block: the density matrix renormalization group (DMRG) algorithm for quantum chemistry
,”
Github.
https://github.com/sanshar/StackBlock.
61.
H. R.
Larsson
, “
Computing vibrational eigenstates with tree tensor network states (TTNS)
,”
J. Chem. Phys.
151
,
204102
(
2019
).
62.
Z.
Li
,
Y.
Xiao
, and
W.
Liu
, “
On the spin separation of algebraic two-component relativistic Hamiltonians: Molecular properties
,”
J. Chem. Phys.
141
,
054111
(
2014
).
63.
G.
Moritz
,
A.
Wolf
, and
M.
Reiher
, “
Relativistic dmrg calculations on the curve crossing of cesium hydride
,”
J. Chem. Phys.
123
,
184105
(
2005
).
64.
S.
Knecht
,
Ö.
Legeza
, and
M.
Reiher
, “
Communication: Four-component density matrix renormalization group
,”
J. Chem. Phys.
140
,
041101
(
2014
).
65.
S.
Battaglia
,
S.
Keller
, and
S.
Knecht
, “
Efficient relativistic density-matrix renormalization group implementation in a matrix-product formulation
,”
J. Chem. Theory Comput.
14
,
2353
2369
(
2018
).
66.
C. E.
Hoyer
,
H.
Hu
,
L.
Lu
,
S.
Knecht
, and
X.
Li
, “
Relativistic kramers-unrestricted exact-two-component density matrix renormalization group
,”
J. Phys. Chem. A
126
,
5011
5020
(
2022
).
67.
K. G.
Dyall
and
K.
Fægri
, Jr.
,
Introduction to Relativistic Quantum Chemistry
(
Oxford University Press
,
2007
).
68.
H.
Zhai
and
G. K.-L.
Chan
, “
A comparison between the one- and two-step spin–orbit coupling approaches based on the ab initio density matrix renormalization group
,”
J. Chem. Phys.
157
,
164108
(
2022
).
69.
F.
Neese
, “
Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations
,”
J. Chem. Phys.
122
,
034107
(
2005
).
70.
E. R.
Sayfutyarova
and
G. K.-L.
Chan
, “
A state interaction spin-orbit coupling density matrix renormalization group method
,”
J. Chem. Phys.
144
,
234301
(
2016
).
71.
E.
Sayfutyarova
and
G. K.-L.
Chan
, “
Electron paramagnetic resonance g-tensors from state interaction spin-orbit coupling density matrix renormalization group
,”
J. Chem. Phys.
148
,
184103
(
2018
).
72.
G. K.-L.
Chan
and
T.
Van Voorhis
, “
Density-matrix renormalization-group algorithms with nonorthogonal orbitals and non-Hermitian operators, and applications to polyenes
,”
J. Chem. Phys.
122
,
204101
(
2005
).
73.
S. R.
White
, “
Numerical canonical transformation approach to quantum many-body problems
,”
J. Chem. Phys.
117
,
7472
7482
(
2002
).
74.
T.
Yanai
and
G. K.-L.
Chan
, “
Canonical transformation theory for multireference problems
,”
J. Chem. Phys.
124
,
194106
(
2006
).
75.
E.
Neuscamman
,
T.
Yanai
, and
G. K.-L.
Chan
, “
Strongly contracted canonical transformation theory
,”
J. Chem. Phys.
132
,
024106
(
2010
).
76.
T.
Yanai
,
Y.
Kurashige
,
E.
Neuscamman
, and
G. K.-L.
Chan
, “
Extended implementation of canonical transformation theory: Parallelization and a new level-shifted condition
,”
Phys. Chem. Chem. Phys.
14
,
7809
7820
(
2012
).
77.
R. J.
Bartlett
and
M.
Musiał
, “
Coupled-cluster theory in quantum chemistry
,”
Rev. Mod. Phys.
79
,
291
(
2007
).
78.
A.
Mitrushenkov
,
G.
Fano
,
R.
Linguerri
, and
P.
Palmieri
, “
On the possibility to use non-orthogonal orbitals for density matrix renormalization group calculations in quantum chemistry
,” arXiv:cond-mat/0306058 (
2003
).
79.
K.
Liao
,
H.
Zhai
,
E. M.
Christlmaier
,
T.
Schraivogel
,
P. L.
Ríos
,
D.
Kats
, and
A.
Alavi
, “
Density matrix renormalization group for transcorrelated Hamiltonians: Ground and excited states in molecules
,”
J. Chem. Theory Comput.
19
,
1734
1743
(
2023
).
80.
A.
Baiardi
and
M.
Reiher
, “
Transcorrelated density matrix renormalization group
,”
J. Chem. Phys.
153
,
164115
(
2020
).
81.
A. Y.
Sokolov
,
S.
Guo
,
E.
Ronca
, and
G. K.-L.
Chan
, “
Time-dependent N-electron valence perturbation theory with matrix product state reference wavefunctions for large active spaces and basis sets: Applications to the chromium dimer and all-trans polyenes
,”
J. Chem. Phys.
146
,
244102
(
2017
).
82.
G.
Moritz
,
B. A.
Hess
, and
M.
Reiher
, “
Convergence behavior of the density-matrix renormalization group algorithm for optimized orbital orderings
,”
J. Chem. Phys.
122
,
024107
(
2005
).
83.
Y.
Ma
and
H.
Ma
, “
Assessment of various natural orbitals as the basis of large active space density-matrix renormalization group calculations
,”
J. Chem. Phys.
138
,
224105
(
2013
).
84.
R. V.
Mishmash
,
T. P.
Gujarati
,
M.
Motta
,
H.
Zhai
,
G. K.-L.
Chan
, and
A.
Mezzacapo
, “
Hierarchical clifford transformations to reduce entanglement in quantum chemistry wave functions
,”
J. Chem. Theory Comput.
19
,
3194
3208
(
2023
).
85.
M.
Fiedler
, “
A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory
,”
Czechoslovak Math. J.
25
,
619
633
(
1975
).
86.
G.
Barcza
,
Ö.
Legeza
,
K. H.
Marti
, and
M.
Reiher
, “
Quantum-information analysis of electronic states of different molecular structures
,”
Phys. Rev. A
83
,
012508
(
2011
).
87.
R.
Olivares-Amaya
,
W.
Hu
,
N.
Nakatani
,
S.
Sharma
,
J.
Yang
, and
G. K.-L.
Chan
, “
The ab-initio density matrix renormalization group in practice
,”
J. Chem. Phys.
142
,
034102
(
2015
).
88.
J.
Rissler
,
R. M.
Noack
, and
S. R.
White
, “
Measuring orbital interaction using quantum information theory
,”
Chem. Phys.
323
,
519
531
(
2006
).
89.
Q.
Sun
,
J.
Yang
, and
G. K.-L.
Chan
, “
A general second order complete active space self-consistent-field solver for large-scale systems
,”
Chem. Phys. Lett.
683
,
291
299
(
2017
).
90.
J. E.
Smith
,
J.
Lee
, and
S.
Sharma
, “
Near-exact nuclear gradients of complete active space self-consistent field wave functions
,”
J. Chem. Phys.
157
,
094104
(
2022
).
91.
D.
Zgid
and
M.
Nooijen
, “
The density matrix renormalization group self-consistent field method: Orbital optimization with the density matrix renormalization group method in the active space
,”
J. Chem. Phys.
128
,
144116
(
2008
).
92.
D.
Ghosh
,
J.
Hachmann
,
T.
Yanai
, and
G. K.-L.
Chan
, “
Orbital optimization in the density matrix renormalization group, with applications to polyenes and β-carotene
,”
J. Chem. Phys.
128
,
144117
(
2008
).
93.
T.
Yanai
,
Y.
Kurashige
,
D.
Ghosh
, and
G. K.-L.
Chan
, “
Accelerating convergence in iterative solution for large-scale complete active space self-consistent-field calculations
,”
Int. J. Quantum Chem.
109
,
2178
2190
(
2009
).
94.
W.
Hu
and
G. K.-L.
Chan
, “
Excited-state geometry optimization with the density matrix renormalization group, as applied to polyenes
,”
J. Chem. Theory Comput.
11
,
3000
3009
(
2015
).
95.
T.
Iino
,
T.
Shiozaki
, and
T.
Yanai
, “
Algorithm for analytic nuclear energy gradients of state averaged DMRG-CASSCF theory with newly derived coupled-perturbed equations
,”
J. Chem. Phys.
158
,
054107
(
2023
).
96.
H.
Zhai
and
G. K.-L.
Chan
, “
Low communication high performance ab initio density matrix renormalization group algorithms
,”
J. Chem. Phys.
154
,
224116
(
2021
).
97.
G. K.-L.
Chan
,
A.
Keselman
,
N.
Nakatani
,
Z.
Li
, and
S. R.
White
, “
Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms
,”
J. Chem. Phys.
145
,
014102
(
2016
).
98.
E.
Stoudenmire
and
S. R.
White
, “
Real-space parallel density matrix renormalization group
,”
Phys. Rev. B
87
,
155137
(
2013
).
99.
F.-Z.
Chen
,
C.
Cheng
, and
H.-G.
Luo
, “
Real-space parallel density matrix renormalization group with adaptive boundaries
,”
Chin. Phys. B
30
,
080202
(
2021
).
100.
G. K.-L.
Chan
, “
An algorithm for large scale density matrix renormalization group calculations
,”
J. Chem. Phys.
120
,
3172
3178
(
2004
).
101.
R.
Levy
,
E.
Solomonik
, and
B. K.
Clark
, “
Distributed-memory DMRG via sparse and dense parallel tensor contractions
,” in
SC20: International Conference for High Performance Computing, Networking, Storage and Analysis
(
IEEE
,
2020
), pp.
1
14
.
102.
G.
Hager
,
E.
Jeckelmann
,
H.
Fehske
, and
G.
Wellein
, “
Parallelization strategies for density matrix renormalization group algorithms on shared-memory systems
,”
J. Comput. Phys.
194
,
795
808
(
2004
).
103.
J. J.
Eriksen
,
T. A.
Anderson
,
J. E.
Deustua
,
K.
Ghanem
,
D.
Hait
,
M. R.
Hoffmann
,
S.
Lee
,
D. S.
Levine
,
I.
Magoulas
,
J.
Shen
et al, “
The ground state electronic energy of benzene
,”
J. Phys. Chem. Lett.
11
,
8922
8929
(
2020
).
104.
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
105.
E.
Ronca
,
Z.
Li
,
C. A.
Jimenez-Hoyos
, and
G. K.-L.
Chan
, “
Time-step targeting time-dependent and dynamical density matrix renormalization group algorithms with ab initio Hamiltonians
,”
J. Chem. Theory Comput.
13
,
5560
5571
(
2017
).
106.
S.
Guo
,
Z.
Li
, and
G. K.-L.
Chan
, “
Communication: An efficient stochastic algorithm for the perturbative density matrix renormalization group in large active spaces
,”
J. Chem. Phys.
148
,
221104
(
2018
).
107.
S. R.
White
and
R. L.
Martin
, “
Ab initio quantum chemistry using the density matrix renormalization group
,”
J. Chem. Phys.
110
,
4127
4130
(
1999
).
108.
E.
Jeckelmann
and
S. R.
White
, “
Density-matrix renormalization-group study of the polaron problem in the holstein model
,”
Phys. Rev. B
57
,
6376
(
1998
).
109.
Y.
Ge
,
W.
Li
,
J.
Ren
, and
Z.
Shuai
, “
Computational method for evaluating the thermoelectric power factor for organic materials modeled by the Holstein model: A time-dependent density matrix renormalization group formalism
,”
J. Chem. Theory Comput.
18
,
6437
6446
(
2022
).
110.
C.
Hubig
,
I.
McCulloch
, and
U.
Schollwöck
, “
Generic construction of efficient matrix product operators
,”
Phys. Rev. B
95
,
035129
(
2017
).
111.
J.
Ren
,
W.
Li
,
T.
Jiang
, and
Z.
Shuai
, “
A general automatic method for optimal construction of matrix product operators using bipartite graph theory
,”
J. Chem. Phys.
153
,
084118
(
2020
).
112.
E. M.
Stoudenmire
and
S. R.
White
, “
Sliced basis density matrix renormalization group for electronic structure
,”
Phys. Rev. Lett.
119
,
046401
(
2017
).
113.
L.
Lin
and
Y.
Tong
, “
Low-rank representation of tensor network operators with long-range pairwise interactions
,”
SIAM J. Sci. Comput.
43
,
A164
A192
(
2021
).
114.
J.
Kirn
and
D.
Rees
, “
Crystallographic structure and functional implications of the nitrogenase molybdenum–iron protein from azotobacter vinelandii
,”
Nature
360
,
553
560
(
1992
).
115.
S.
Sharma
and
G. K.-L.
Chan
, “
Communication: A flexible multi-reference perturbation theory by minimizing the Hylleraas functional with matrix product states
,”
J. Chem. Phys.
141
,
111101
(
2014
).
116.
J. R.
Shewchuk
. Technical Report No. CMU-CS-94-125 (School of Computer Science, Carnegie Mellon University,
1994
).
117.
H. H.
Harman
and
W. H.
Jones
, “
Factor analysis by minimizing residuals (minres)
,”
Psychometrika
31
,
351
368
(
1966
).
118.
J. E.
Hicken
and
D. W.
Zingg
, “
A simplified and flexible variant of gcrot for solving nonsymmetric linear systems
,”
SIAM J. Sci. Comput.
32
,
1672
1694
(
2010
).
119.
M. B.
Van Gijzen
and
P.
Sonneveld
, “
Algorithm 913: An elegant IDR (s) variant that efficiently exploits biorthogonality properties
,”
ACM Trans. Math. Software
38
,
1
19
(
2011
).
120.
S.
Mohr
,
W.
Dawson
,
M.
Wagner
,
D.
Caliste
,
T.
Nakajima
, and
L.
Genovese
, “
Efficient computation of sparse matrix functions for large-scale electronic structure calculations: The chess library
,”
J. Chem. Theory Comput.
13
,
4684
4698
(
2017
).
121.
C. C.
Paige
and
M. A.
Saunders
, “
LSQR: An algorithm for sparse linear equations and sparse least squares
,”
ACM Trans. Math. Software
8
,
43
71
(
1982
).
122.
Software code:
H.
Zhai
,
Y.
Gao
, and
G. K.-L.
Chan
(
2023
). “
pyblock3: an efficient python block sparse tensor and MPS/DMRG library
,”
Github.
https://github.com/block-hczhai/pyblock3-preview.
123.
C. R.
Harris
,
K. J.
Millman
,
S. J.
Van Der Walt
,
R.
Gommers
,
P.
Virtanen
,
D.
Cournapeau
,
E.
Wieser
,
J.
Taylor
,
S.
Berg
,
N. J.
Smith
et al, “
Array programming with NumPy
,”
Nature
585
,
357
362
(
2020
).
124.
Software code:
A.
Paszke
,
S.
Gross
,
S.
Chintala
,
G.
Chanan
,
E.
Yang
,
Z.
DeVito
,
Z.
Lin
,
A.
Desmaison
,
L.
Antiga
, and
A.
Lerer
(
2017
). “
Automatic differentiation in pytorch
,”
Pytorch.
https://pytorch.org.
125.
S.
Hirata
, “
Tensor contraction engine: Abstraction and automated parallel implementation of configuration-interaction, coupled-cluster, and many-body perturbation theories
,”
J. Phys. Chem. A
107
,
9887
9897
(
2003
).
126.
S.
Hirata
, “
Symbolic algebra in quantum chemistry
,”
Theor. Chem. Acc.
116
,
2
17
(
2006
).
127.
E.
Neuscamman
,
T.
Yanai
, and
G. K.-L.
Chan
, “
Quadratic canonical transformation theory and higher order density matrices
,”
J. Chem. Phys.
130
,
124102
(
2009
).
128.
M.
Saitow
,
Y.
Kurashige
, and
T.
Yanai
, “
Multireference configuration interaction theory using cumulant reconstruction with internal contraction of density matrix renormalization group wave function
,”
J. Chem. Phys.
139
,
044118
(
2013
).
129.
M. K.
MacLeod
and
T.
Shiozaki
, “
Communication: Automatic code generation enables nuclear gradient computations for fully internally contracted multireference theory
,”
J. Chem. Phys.
142
,
051103
(
2015
).
130.
M.
Saitow
,
Y.
Kurashige
, and
T.
Yanai
, “
Fully internally contracted multireference configuration interaction theory using density matrix renormalization group: A reduced-scaling implementation derived by computer-aided tensor factorization
,”
J. Chem. Theory Comput.
11
,
5120
5131
(
2015
).
131.
F. A.
Evangelista
, “
Automatic derivation of many-body theories based on general fermi vacua
,”
J. Chem. Phys.
157
,
064111
(
2022
).
132.
T.
Saue
, “
Relativistic Hamiltonians for chemistry: A primer
,”
ChemPhysChem
12
,
3077
3094
(
2011
).
133.
H.
Schurkus
,
D.-T.
Chen
,
H.-P.
Cheng
,
G. K.-L.
Chan
, and
J.
Stanton
, “
Theoretical prediction of magnetic exchange coupling constants from broken-symmetry coupled cluster calculations
,”
J. Chem. Phys.
152
,
234115
(
2020
).
134.
D.
Zgid
and
M.
Nooijen
, “
Obtaining the two-body density matrix in the density matrix renormalization group method
,”
J. Chem. Phys.
128
,
144115
(
2008
).
135.
S.
Guo
,
M. A.
Watson
,
W.
Hu
,
Q.
Sun
, and
G. K.-L.
Chan
, “
N-electron valence state perturbation theory based on a density matrix renormalization group reference function, with applications to the chromium dimer and a trimer model of poly(p-phenylenevinylene)
,”
J. Chem. Theory Comput.
12
,
1583
1591
(
2016
).
136.
C.
Angeli
,
R.
Cimiraglia
, and
J.-P.
Malrieu
, “
n-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants
,”
J. Chem. Phys.
117
,
9138
9153
(
2002
).
137.
Ö.
Legeza
and
J.
Sólyom
, “
Optimizing the density-matrix renormalization group method using quantum information entropy
,”
Phys. Rev. B
68
,
195116
(
2003
).
138.
K.
Boguslawski
,
P.
Tecmer
,
O.
Legeza
, and
M.
Reiher
, “
Entanglement measures for single- and multireference correlation effects
,”
J. Phys. Chem. Lett.
3
,
3129
3135
(
2012
).
139.
G.
Liu
,
W.
Li
, and
W.
You
, “
Bipartite entanglement of the one-dimensional extended quantum compass model in a transverse field
,”
Eur. Phys. J. B
85
,
168
176
(
2012
).
140.
S.
Lee
,
H.
Zhai
,
S.
Sharma
,
C. J.
Umrigar
, and
G. K.-L.
Chan
, “
Externally corrected CCSD with renormalized perturbative triples (R-ecCCSD(T)) and the density matrix renormalization group and selected configuration interaction external sources
,”
J. Chem. Theory Comput.
17
,
3414
3425
(
2021
).
141.
I.
Magoulas
,
K.
Gururangan
,
P.
Piecuch
,
J. E.
Deustua
, and
J.
Shen
, “
Is externally corrected coupled cluster always better than the underlying truncated configuration interaction?
,”
J. Chem. Theory Comput.
17
,
4006
4027
(
2021
).
142.
T.
Kinoshita
,
O.
Hino
, and
R. J.
Bartlett
, “
Coupled-cluster method tailored by configuration interaction
,”
J. Chem. Phys.
123
,
074106
(
2005
).
143.
O.
Hino
,
T.
Kinoshita
,
G. K.-L.
Chan
, and
R.
Bartlett
, “
Tailored coupled cluster singles and doubles method applied to calculations on molecular structure and harmonic vibrational frequencies of ozone
,”
J. Chem. Phys.
124
,
114311
(
2006
).
144.
L.
Veis
,
A.
Antalík
,
J.
Brabec
,
F.
Neese
,
O.
Legeza
, and
J.
Pittner
, “
Coupled cluster method with single and double excitations tailored by matrix product state wave functions
,”
J. Phys. Chem. Lett.
7
,
4072
4078
(
2016
).
145.
F. M.
Faulstich
,
M.
Máté
,
A.
Laestadius
,
M. A.
Csirik
,
L.
Veis
,
A.
Antalik
,
J.
Brabec
,
R.
Schneider
,
J.
Pittner
,
S.
Kvaal
, and
Ö.
Legeza
, “
Numerical and theoretical aspects of the DMRG-TCC method exemplified by the nitrogen dimer
,”
J. Chem. Theory Comput.
15
,
2206
2220
(
2019
).
146.
A. O.
Mitrushchenkov
,
G.
Fano
,
R.
Linguerri
, and
P.
Palmieri
, “
On the importance of orbital localization in QC-DMRG calculations
,”
Int. J. Quantum Chem.
112
,
1606
1619
(
2012
).
147.
R.
Shepard
,
S. R.
Brozell
, and
G.
Gidofalvi
, “
The representation and parametrization of orthogonal matrices
,”
J. Phys. Chem. A
119
,
7924
7939
(
2015
).
148.
H. W.
Kuhn
, “
The Hungarian method for the assignment problem
,”
Naval Res. Logistics Q.
2
,
83
97
(
1955
).
149.
K.
Fukuda
and
T.
Matsui
, “
Finding all the perfect matchings in bipartite graphs
,”
Appl. Math. Lett.
7
,
15
18
(
1994
).
150.
S.
Ramasesha
,
S. K.
Pati
,
H.
Krishnamurthy
,
Z.
Shuai
, and
J.
Brédas
, “
Low-lying electronic excitations and nonlinear optic properties of polymers via symmetrized density matrix renormalization group method
,”
Synth. Met.
85
,
1019
1022
(
1997
).
151.
J. J.
Dorando
,
J.
Hachmann
, and
G. K.-L.
Chan
, “
Analytic response theory for the density matrix renormalization group
,”
J. Chem. Phys.
130
,
184111
(
2009
).
152.
S.
Lee
,
H.
Zhai
, and
G. K.-L.
Chan
, “
An ab initio correction vector restricted active space approach to the l-edge XAS and 2p3d RIXS spectra of transition metal complexes
,”
J. Chem. Theory Comput.
19
,
7753
7763
(
2023
).
153.
A. J.
Wathen
, “
Preconditioning
,”
Acta Numer.
24
,
329
376
(
2015
).
154.
A.
Holzner
,
A.
Weichselbaum
,
I. P.
McCulloch
,
U.
Schollwöck
, and
J.
von Delft
, “
Chebyshev matrix product state approach for spectral functions
,”
Phys. Rev. B
83
,
195115
(
2011
).
155.
A.
Braun
and
P.
Schmitteckert
, “
Numerical evaluation of Green’s functions based on the Chebyshev expansion
,”
Phys. Rev. B
90
,
165112
(
2014
).
156.
H.
Xie
,
R.
Huang
,
X.
Han
,
X.
Yan
,
H.
Zhao
,
Z.
Xie
,
H.
Liao
, and
T.
Xiang
, “
Reorthonormalization of Chebyshev matrix product states for dynamical correlation functions
,”
Phys. Rev. B
97
,
075111
(
2018
).
157.
T.
Jiang
,
J.
Ren
, and
Z.
Shuai
, “
Chebyshev matrix product states with canonical orthogonalization for spectral functions of many-body systems
,”
J. Phys. Chem. Lett.
12
,
9344
9352
(
2021
).
158.
J.
Haegeman
,
J. I.
Cirac
,
T. J.
Osborne
,
I.
Pižorn
,
H.
Verschelde
, and
F.
Verstraete
, “
Time-dependent variational principle for quantum lattices
,”
Phys. Rev. Lett.
107
,
070601
(
2011
).
159.
J. M.
Kinder
,
C. C.
Ralph
, and
G. K.-L.
Chan
, “
Analytic time evolution, random phase approximation, and Green functions for matrix product states
,” in
Quantum Information and Computation for Chemistry
(
Wiley
,
2014
), pp.
179
192
.
160.
N.
Nakatani
,
S.
Wouters
,
D.
Van Neck
, and
G. K.-L.
Chan
, “
Linear response theory for the density matrix renormalization group: Efficient algorithms for strongly correlated excited states
,”
J. Chem. Phys.
140
,
024108
(
2014
).
161.
J.
Haegeman
,
C.
Lubich
,
I.
Oseledets
,
B.
Vandereycken
, and
F.
Verstraete
, “
Unifying time evolution and optimization with matrix product states
,”
Phys. Rev. B
94
,
165116
(
2016
).
162.
F.
Heidrich-Meisner
,
A. E.
Feiguin
, and
E.
Dagotto
, “
Real-time simulations of nonequilibrium transport in the single-impurity Anderson model
,”
Phys. Rev. B
79
,
235336
(
2009
).
163.
T.
Jiang
,
W.
Li
,
J.
Ren
, and
Z.
Shuai
, “
Finite temperature dynamical density matrix renormalization group for spectroscopy in frequency domain
,”
J. Phys. Chem. Lett.
11
,
3761
3768
(
2020
).
164.
J.
Ren
,
Z.
Shuai
, and
G. K.-L.
Chan
, “
Time-dependent density matrix renormalization group algorithms for nearly exact absorption and fluorescence spectra of molecular aggregates at both zero and finite temperature
,”
J. Chem. Theory Comput.
14
,
5027
5039
(
2018
).
165.
R.
Peng
,
A. F.
White
,
H.
Zhai
, and
G. K.-L.
Chan
, “
Conservation laws in coupled cluster dynamics at finite temperature
,”
J. Chem. Phys.
155
,
044103
(
2021
).
166.
P.-F.
Loos
and
P. M.
Gill
, “
The uniform electron gas
,”
WIREs Comput. Mol. Sci.
6
,
410
429
(
2016
).
167.
P. G.
Szalay
,
T.
Muller
,
G.
Gidofalvi
,
H.
Lischka
, and
R.
Shepard
, “
Multiconfiguration self-consistent field and multireference configuration interaction methods and applications
,”
Chem. Rev.
112
,
108
181
(
2012
).
168.
T.
Yanai
,
Y.
Kurashige
,
E.
Neuscamman
, and
G. K.-L.
Chan
, “
Multireference quantum chemistry through a joint density matrix renormalization group and canonical transformation theory
,”
J. Chem. Phys.
132
,
024105
(
2010
).
169.
Y.
Kurashige
and
T.
Yanai
, “
Second-order perturbation theory with a density matrix renormalization group self-consistent field reference function: Theory and application to the study of chromium dimer
,”
J. Chem. Phys.
135
,
094104
(
2011
).
170.
S.
Sharma
and
A.
Alavi
, “
Multireference linearized coupled cluster theory for strongly correlated systems using matrix product states
,”
J. Chem. Phys.
143
,
102815
(
2015
).
171.
Z.
Luo
,
Y.
Ma
,
X.
Wang
, and
H.
Ma
, “
Externally-contracted multireference configuration interaction method using a DMRG reference wave function
,”
J. Chem. Theory Comput.
14
,
4747
4755
(
2018
).
172.
P.
Sharma
,
V.
Bernales
,
S.
Knecht
,
D. G.
Truhlar
, and
L.
Gagliardi
, “
Density matrix renormalization group pair-density functional theory (DMRG-PDFT): Singlet–triplet gaps in polyacenes and polyacetylenes
,”
Chem. Sci.
10
,
1716
1723
(
2019
).
173.
P.
Beran
,
M.
Matoušek
,
M.
Hapka
,
K.
Pernal
, and
L.
Veis
, “
Density matrix renormalization group with dynamical correlation via adiabatic connection
,”
J. Chem. Theory Comput.
17
,
7575
7585
(
2021
).
174.
D.
Khokhlov
and
A.
Belov
, “
Toward an accurate ab initio description of low-lying singlet excited states of polyenes
,”
J. Chem. Theory Comput.
17
,
4301
4315
(
2021
).
175.
S.
Guo
,
Z.
Li
, and
G. K.-L.
Chan
, “
A perturbative density matrix renormalization group algorithm for large active spaces
,”
J. Chem. Theory Comput.
14
,
4063
4071
(
2018
).
176.
S.
Sharma
,
G.
Jeanmairet
, and
A.
Alavi
, “
Quasi-degenerate perturbation theory using matrix product states
,”
J. Chem. Phys.
144
,
034103
(
2016
).
177.
S.
Sharma
,
G.
Knizia
,
S.
Guo
, and
A.
Alavi
, “
Combining internally contracted states and matrix product states to perform multireference perturbation theory
,”
J. Chem. Theory Comput.
13
,
488
498
(
2017
).
178.
G.
Barcza
,
M. A.
Werner
,
G.
Zaránd
,
A.
Pershin
,
Z.
Benedek
,
O.
Legeza
, and
T.
Szilvási
, “
Toward large-scale restricted active space calculations inspired by the Schmidt decomposition
,”
J. Phys. Chem. A
126
,
9709
9718
(
2022
).
179.
P. G.
Szalay
and
R. J.
Bartlett
, “
Multi-reference averaged quadratic coupled-cluster method: A size-extensive modification of multi-reference CI
,”
Chem. Phys. Lett.
214
,
481
488
(
1993
).
180.
R. J.
Gdanitz
and
R.
Ahlrichs
, “
The averaged coupled-pair functional (ACPF): A size-extensive modification of MR CI(SD)
,”
Chem. Phys. Lett.
143
,
413
420
(
1988
).
181.
C.
Angeli
,
R.
Cimiraglia
,
S.
Evangelisti
,
T.
Leininger
, and
J.-P.
Malrieu
, “
Introduction of n-electron valence states for multireference perturbation theory
,”
J. Chem. Phys.
114
,
10252
10264
(
2001
).
182.
C.
Angeli
,
M.
Pastore
, and
R.
Cimiraglia
, “
New perspectives in multireference perturbation theory: The n-electron valence state approach
,”
Theor. Chem. Acc.
117
,
743
754
(
2007
).
183.
R. F.
Fink
, “
Two new unitary-invariant and size-consistent perturbation theoretical approaches to the electron correlation energy
,”
Chem. Phys. Lett.
428
,
461
466
(
2006
).
184.
R. F.
Fink
, “
The multi-reference retaining the excitation degree perturbation theory: A size-consistent, unitary invariant, and rapidly convergent wavefunction based ab initio approach
,”
Chem. Phys.
356
,
39
46
(
2009
).
185.
M.
Roemelt
,
S.
Guo
, and
G. K.-L.
Chan
, “
A projected approximation to strongly contracted N-electron valence perturbation theory for DMRG wavefunctions
,”
J. Chem. Phys.
144
,
204113
(
2016
).
186.
Software code:
W.
Jakob
,
J.
Rhinelander
, and
D.
Moldovan
(2017). “
pybind11—Seamless operability between C++11 and Python
,”
Github.
https://github.com/pybind/pybind11.
187.
Z.-H.
Cui
,
T.
Zhu
, and
G. K.-L.
Chan
, “
Efficient implementation of ab initio quantum embedding in periodic systems: Density matrix embedding theory
,”
J. Chem. Theory Comput.
16
,
119
129
(
2019
).
188.
C.
Sun
,
U.
Ray
,
Z.-H.
Cui
,
M.
Stoudenmire
,
M.
Ferrero
, and
G. K.-L.
Chan
, “
Finite-temperature density matrix embedding theory
,”
Phys. Rev. B
101
,
075131
(
2020
).
189.
Z.-H.
Cui
,
H.
Zhai
,
X.
Zhang
, and
G. K.-L.
Chan
, “
Systematic electronic structure in the cuprate parent state from quantum many-body simulations
,”
Science
377
,
1192
1198
(
2022
).
190.
Z.-H.
Cui
,
J.
Yang
,
J.
Tölle
,
H.-Z.
Ye
,
H.
Zhai
,
R.
Kim
,
X.
Zhang
,
L.
Lin
,
T. C.
Berkelbach
, and
G. K.-L.
Chan
, “
Ab initio quantum many-body description of superconducting trends in the cuprates
,” arXiv:2306.16561 (
2023
).
191.
T.
Zhu
,
Z.-H.
Cui
, and
G. K.-L.
Chan
, “
Efficient formulation of ab initio quantum embedding in periodic systems: Dynamical mean-field theory
,”
J. Chem. Theory Comput.
16
,
141
153
(
2019
).
192.
T.
Zhu
and
G. K.-L.
Chan
, “
Ab initio full cell GW + DMFT for correlated materials
,”
Phys. Rev. X
11
,
021006
(
2021
).
193.
F.
Aquilante
,
J.
Autschbach
,
A.
Baiardi
,
S.
Battaglia
,
V. A.
Borin
,
L. F.
Chibotaru
,
I.
Conti
,
L.
De Vico
,
M.
Delcey
,
I.
Fdez Galván
et al, “
Modern quantum chemistry with [Open]Molcas
,”
J. Chem. Phys.
152
,
214117
(
2020
).
194.
F.
Liu
,
Y.
Kurashige
,
T.
Yanai
, and
K.
Morokuma
, “
Multireference ab initio density matrix renormalization group (DMRG)-CASSCF and DMRG-CASPT2 study on the photochromic ring opening of spiropyran
,”
J. Chem. Theory Comput.
9
,
4462
4469
(
2013
).
195.
S.
Wouters
,
V.
Van Speybroeck
, and
D.
Van Neck
, “
DMRG-CASPT2 study of the longitudinal static second hyperpolarizability of all-trans polyenes
,”
J. Chem. Phys.
145
,
054120
(
2016
).
196.
N.
Nakatani
and
S.
Guo
, “
Density matrix renormalization group (DMRG) method as a common tool for large active-space CASSCF/CASPT2 calculations
,”
J. Chem. Phys.
146
,
094102
(
2017
).
197.
Y.
Kurashige
,
J.
Chalupský
,
T. N.
Lan
, and
T.
Yanai
, “
Complete active space second-order perturbation theory with cumulant approximation for extended active-space wavefunction from density matrix renormalization group
,”
J. Chem. Phys.
141
,
174111
(
2014
).
198.
Q. M.
Phung
,
S.
Wouters
, and
K.
Pierloot
, “
Cumulant approximated second-order perturbation theory based on the density matrix renormalization group for transition metal complexes: A benchmark study
,”
J. Chem. Theory Comput.
12
,
4352
4361
(
2016
).
199.
C.
Li
and
F. A.
Evangelista
, “
Multireference theories of electron correlation based on the driven similarity renormalization group
,”
Annu. Rev. Phys. Chem.
70
,
245
273
(
2019
).
200.
Software code:
Qiskit contributors
(2023). “
Qiskit: An open source framework for quantum computing
,”
Github.
https://github.com/Qiskit/qiskit.
You do not currently have access to this content.