Strong coupling of a confined optical field to the excitonic or vibronic transitions of a molecular material results in the formation of new hybrid states called polaritons. Such effects have been extensively studied in Fabry–Pèrot microcavity structures where an organic material is placed between two highly reflective mirrors. Recently, theoretical and experimental evidence has suggested that strong coupling can be used to modify chemical reactivity as well as molecular photophysical functionalities. However, the geometry of conventional microcavity structures limits the ability of molecules “encapsulated” in a cavity to interact with their local environment. Here, we fabricate mirrorless organic membranes that utilize the refractive index contrast between the organic active material and its surrounding medium to confine an optical field with Q-factor values up to 33. Using angle-resolved white light reflectivity measurements, we confirm that our structures operate in the strong coupling regime, with Rabi-splitting energies between 60 and 80 meV in the different structures studied. The experimental results are matched by transfer matrix and coupled oscillator models that simulate the various polariton states of the free standing membranes. Our work demonstrates that mechanically flexible and easy-to-fabricate free standing membranes can support strong light–matter coupling, making such simple and versatile structures highly promising for a range of polariton applications.

1.
A. V.
Kavokin
,
J. J.
Baumberg
,
G.
Malpuech
, and
F. P.
Laussy
,
Microcavities
(
Oxford University Press
,
Oxford
,
2007
).
2.
C.
Weisbuch
,
M.
Nishioka
,
A.
Ishikawa
, and
Y.
Arakawa
, “
Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity
,”
Phys. Rev. Lett.
69
,
3314
3317
(
1992
).
3.
D. G.
Lidzey
,
D. D. C.
Bradley
,
M. S.
Skolnick
,
T.
Virgili
,
S.
Walker
, and
D. M.
Whittaker
, “
Strong exciton–photon coupling in an organic semiconductor microcavity
,”
Nature
395
,
53
55
(
1998
).
4.
D. G.
Lidzey
,
D. D. C.
Bradley
,
T.
Virgili
,
A.
Armitage
,
M. S.
Skolnick
, and
S.
Walker
, “
Room temperature polariton emission from strongly coupled organic semiconductor microcavities
,”
Phys. Rev. Lett.
82
,
3316
3319
(
1999
).
5.
D. M.
Coles
,
P.
Michetti
,
C.
Clark
,
W. C.
Tsoi
,
A. M.
Adawi
,
J. S.
Kim
, and
D. G.
Lidzey
, “
Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities
,”
Adv. Funct. Mater.
21
,
3691
3696
(
2011
).
6.
J. D.
Plumhof
,
T.
Stöferle
,
L.
Mai
,
U.
Scherf
, and
R. F.
Mahrt
, “
Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer
,”
Nat. Mater.
13
,
247
252
(
2014
).
7.
K. S.
Daskalakis
,
S. A.
Maier
,
R.
Murray
, and
S.
Kéna-cohen
, “
Nonlinear interactions in an organic polariton condensate
,”
Nat. Mater.
13
,
271
278
(
2014
).
8.
T.
Cookson
,
K.
Georgiou
,
A.
Zasedatelev
,
R. T.
Grant
,
T.
Virgili
,
M.
Cavazzini
,
F.
Galeotti
,
C.
Clark
,
N. G.
Berloff
,
D. G.
Lidzey
, and
P. G.
Lagoudakis
, “
A yellow polariton condensate in a dye filled microcavity
,”
Adv. Opt. Mater.
5
,
1700203
(
2017
).
9.
G.
Lerario
,
A.
Fieramosca
,
F.
Barachati
,
D.
Ballarini
,
K. S.
Daskalakis
,
L.
Dominici
,
M.
De Giorgi
,
S. A.
Maier
,
G.
Gigli
,
S.
Kéna-Cohen
, and
D.
Sanvitto
, “
Room-temperature superfluidity in a polariton condensate
,”
Nat. Phys.
13
,
837
841
(
2017
).
10.
T.
Yagafarov
,
D.
Sannikov
,
A.
Zasedatelev
,
K.
Georgiou
,
A.
Baranikov
,
O.
Kyriienko
,
I.
Shelykh
,
L.
Gai
,
Z.
Shen
,
D.
Lidzey
, and
P.
Lagoudakis
, “
Mechanisms of blueshifts in organic polariton condensates
,”
Commun. Phys.
3
,
18
(
2020
).
11.
D.
Sannikov
,
T.
Yagafarov
,
K.
Georgiou
,
A.
Zasedatelev
,
A.
Baranikov
,
L.
Gai
,
Z.
Shen
,
D. G.
Lidzey
, and
P.
Lagoudakis
, “
Room temperature broadband polariton lasing from a dye-filled microcavity
,”
Adv. Opt. Mater.
7
,
1900163
(
2019
).
12.
A. V.
Zasedatelev
,
A. V.
Baranikov
,
D.
Urbonas
,
F.
Scafirimuto
,
U.
Scherf
,
T.
Stöferle
,
R. F.
Mahrt
, and
P. G.
Lagoudakis
, “
A room-temperature organic polariton transistor
,”
Nat. Photonics
13
,
378
383
(
2019
).
13.
R.
Jayaprakash
,
K.
Georgiou
,
H.
Coulthard
,
A.
Askitopoulos
,
S. K.
Rajendran
,
D. M.
Coles
,
A. J.
Musser
,
J.
Clark
,
I. D. W.
Samuel
,
G. A.
Turnbull
,
P. G.
Lagoudakis
, and
D. G.
Lidzey
, “
A hybrid organic–inorganic polariton LED
,”
Light: Sci. Appl.
8
,
81
(
2019
).
14.
R.
Jayaprakash
,
C. E.
Whittaker
,
K.
Georgiou
,
O. S.
Game
,
K. E.
McGhee
,
D. M.
Coles
, and
D. G.
Lidzey
, “
Two-dimensional organic-exciton polariton lattice fabricated using laser patterning
,”
ACS Photonics
7
,
2273
2281
(
2020
).
15.
D. G.
Lidzey
,
D. D. C.
Bradley
,
A.
Armitage
,
S.
Walker
, and
M. S.
Skolnick
, “
Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities
,”
Science
288
,
1620
1623
(
2000
).
16.
D. M.
Coles
,
N.
Somaschi
,
P.
Michetti
,
C.
Clark
,
P. G.
Lagoudakis
,
P. G.
Savvidis
, and
D. G.
Lidzey
, “
Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity
,”
Nat. Mater.
13
,
712
719
(
2014
).
17.
X.
Zhong
,
T.
Chervy
,
L.
Zhang
,
A.
Thomas
,
J.
George
,
C.
Genet
,
J. A.
Hutchison
, and
T. W.
Ebbesen
, “
Energy transfer between spatially separated entangled molecules
,”
Angew. Chem., Int. Ed.
56
,
9034
9038
(
2017
).
18.
K.
Georgiou
,
P.
Michetti
,
L.
Gai
,
M.
Cavazzini
,
Z.
Shen
, and
D. G.
Lidzey
, “
Control over energy transfer between fluorescent BODIPY dyes in a strongly coupled microcavity
,”
ACS Photonics
5
,
258
266
(
2018
).
19.
K.
Akulov
,
D.
Bochman
,
A.
Golombek
, and
T.
Schwartz
, “
Long-distance resonant energy transfer mediated by hybrid plasmonic–photonic modes
,”
J. Phys. Chem. C
122
,
15853
15860
(
2018
).
20.
K.
Georgiou
,
R.
Jayaprakash
,
A.
Othonos
, and
D. G.
Lidzey
, “
Ultralong-range polariton-assisted energy transfer in organic microcavities
,”
Angew. Chem., Int. Ed.
60
,
16661
16667
(
2021
).
21.
J. A.
Hutchison
,
T.
Schwartz
,
C.
Genet
,
E.
Devaux
, and
T. W.
Ebbesen
, “
Modifying chemical landscapes by coupling to vacuum fields
,”
Angew. Chem., Int. Ed.
51
,
1592
1596
(
2012
).
22.
R. F.
Ribeiro
,
L. A.
Martínez-Martínez
,
M.
Du
,
J.
Campos-Gonzalez-Angulo
, and
J.
Yuen-Zhou
, “
Polariton chemistry: Controlling molecular dynamics with optical cavities
,”
Chem. Sci.
9
,
6325
6339
(
2018
).
23.
M.
Hertzog
,
M.
Wang
,
J.
Mony
, and
K.
Börjesson
, “
Strong light–matter interactions: A new direction within chemistry
,”
Chem. Soc. Rev.
48
,
937
961
(
2019
).
24.
J. A.
Hutchison
,
A.
Liscio
,
T.
Schwartz
,
A.
Canaguier-Durand
,
C.
Genet
,
V.
Palermo
,
P.
Samorì
, and
T. W.
Ebbesen
, “
Tuning the work-function via strong coupling
,”
Adv. Mater.
25
,
2481
2485
(
2013
).
25.
J.
Galego
,
F. J.
Garcia-Vidal
, and
J.
Feist
, “
Suppressing photochemical reactions with quantized light fields
,”
Nat. Commun.
7
,
13841
(
2016
).
26.
A.
Thomas
,
J.
George
,
A.
Shalabney
,
M.
Dryzhakov
,
S. J.
Varma
,
J.
Moran
,
T.
Chervy
,
X.
Zhong
,
E.
Devaux
,
C.
Genet
,
J. A.
Hutchison
, and
T. W.
Ebbesen
, “
Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field
,”
Angew. Chem., Int. Ed.
55
,
11462
11466
(
2016
).
27.
R. M.
Vergauwe
,
A.
Thomas
,
K.
Nagarajan
,
A.
Shalabney
,
J.
George
,
T.
Chervy
,
M.
Seidel
,
E.
Devaux
,
V.
Torbeev
, and
T. W.
Ebbesen
, “
Modification of enzyme activity by vibrational strong coupling of water
,”
Angew. Chem., Int. Ed.
58
,
15324
15328
(
2019
).
28.
J. A.
Campos-Gonzalez-Angulo
,
R. F.
Ribeiro
, and
J.
Yuen-Zhou
, “
Resonant catalysis of thermally activated chemical reactions with vibrational polaritons
,”
Nat. Commun.
10
,
4685
(
2019
).
29.
A.
Thomas
,
L.
Lethuillier-Karl
,
K.
Nagarajan
,
R. M. A.
Vergauwe
,
J.
George
,
T.
Chervy
,
A.
Shalabney
,
E.
Devaux
,
C.
Genet
,
J.
Moran
, and
T. W.
Ebbesen
, “
Tilting a ground-state reactivity landscape by vibrational strong coupling
,”
Science
363
,
615
619
(
2019
).
30.
B.
Munkhbat
,
M.
Wersäll
,
D. G.
Baranov
,
T. J.
Antosiewicz
, and
T.
Shegai
, “
Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas
,”
Sci. Adv.
4
,
eaas9552
(
2018
).
31.
V. N.
Peters
,
M. O.
Faruk
,
J.
Asane
,
R.
Alexander
,
D. A.
Peters
et al, “
Effect of strong coupling on photodegradation of the semiconducting polymer P3HT
,”
Optica
6
,
318
325
(
2019
).
32.
D.
Polak
,
R.
Jayaprakash
,
T. P.
Lyons
,
L.
Martínez-Martínez
,
A.
Leventis
,
K. J.
Fallon
,
H.
Coulthard
,
D. G.
Bossanyi
,
K.
Georgiou
,
A. J.
Petty
, II
,
J.
Anthony
,
H.
Bronstein
,
J.
Yuen-Zhou
,
A. I.
Tartakovskii
,
J.
Clark
, and
A. J.
Musser
, “
Manipulating molecules with strong coupling: Harvesting triplet excitons in organic exciton microcavities
,”
Chem. Sci.
11
,
343
354
(
2020
).
33.
K.
Georgiou
,
R.
Jayaprakash
, and
D. G.
Lidzey
, “
Strong coupling of organic dyes located at the surface of a dielectric slab microcavity
,”
J. Phys. Chem. Lett.
11
,
9893
9900
(
2020
).
34.
P. A.
Thomas
,
K. S.
Menghrajani
, and
W. L.
Barnes
, “
Cavity-free ultrastrong light-matter coupling
,”
J. Phys. Chem. Lett.
12
,
6914
6918
(
2021
).
35.
P. A.
Thomas
,
K. S.
Menghrajani
, and
W. L.
Barnes
, “
All-optical control of phase singularities using strong light–matter coupling
,”
Nat. Commun.
13
,
1809
(
2022
).
36.
W. L.
Barnes
,
T.
Preist
,
S.
Kitson
, and
J.
Sambles
, “
Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings
,”
Phys. Rev. B
54
,
6227
6244
(
1996
).
37.
W.
Wan
,
X.
Yang
, and
J.
Gao
, “
Strong coupling between mid-infrared localized plasmons and phonons
,”
Opt. Express
24
,
12367
(
2016
).
38.
Y.-F.
Yao
,
C.-H.
Lin
,
C.-Y.
Chao
,
W.-Y.
Chang
,
C.-Y.
Su
,
C.-G.
Tu
,
Y.-W.
Kiang
, and
C. C.
Yang
, “
Coupling of a light-emitting diode with surface plasmon polariton or localized surface plasmon induced on surface silver gratings of different geometries
,”
Opt. Express
26
,
9205
(
2018
).
39.
A.
Berrier
,
R.
Cools
,
C.
Arnold
,
P.
Offermans
,
M.
Crego-Calama
,
S. H.
Brongersma
, and
J.
Gómez-Rivas
, “
Active control of the strong coupling regime between porphyrin excitons and surface plasmon polaritons
,”
ACS Nano
5
,
6226
6232
(
2011
).
40.
S.
Zhang
,
Q.
Shang
,
W.
Du
,
J.
Shi
,
Z.
Wu
,
Y.
Mi
,
J.
Chen
,
F.
Liu
,
Y.
Li
,
M.
Liu
,
Q.
Zhang
, and
X.
Liu
, “
Strong exciton–photon coupling in hybrid inorganic–organic perovskite micro/nanowires
,”
Adv. Opt. Mater.
6
,
1701032
(
2018
).
41.
E. Y.
Tiguntseva
,
D. G.
Baranov
,
A. P.
Pushkarev
,
B.
Munkhbat
,
F.
Komissarenko
,
M.
Franckevičius
,
A. A.
Zakhidov
,
T.
Shegai
,
Y. S.
Kivshar
, and
S. V.
Makarov
, “
Tunable hybrid fano resonances in halide perovskite nanoparticles
,”
Nano Lett.
18
,
5522
5529
(
2018
).
42.
B.
Munkhbat
,
D. G.
Baranov
,
M.
Stührenberg
,
M.
Wersäll
,
A.
Bisht
, and
T.
Shegai
, “
Self-hybridized exciton–polaritons in multilayers of transition metal dichalcogenides for efficient light absorption
,”
ACS Photonics
6
,
139
147
(
2019
).
43.
R.
Verre
,
D. G.
Baranov
,
B.
Munkhbat
,
J.
Cuadra
,
M.
Käll
, and
T.
Shegai
, “
Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators
,”
Nat. Nanotechnol.
14
,
679
683
(
2019
).
44.
M.
Kaeek
,
R.
Damari
,
M.
Roth
,
S.
Fleischer
, and
T.
Schwartz
, “
Strong coupling in a self-coupled terahertz photonic crystal
,”
ACS Photonics
8
,
1881
1888
(
2021
).
45.
A.
Canales
,
O. V.
Kotov
,
B.
Küçüköz
, and
T. O.
Shegai
, “
Self-hybridized vibrational-Mie polaritons in water droplets
,”
J. Chem. Phys.
154
,
024701
(
2023
).
46.
J. E.
Bishop
,
T. J.
Routledge
, and
D. G.
Lidzey
, “
Advances in spray-cast perovskite solar cells
,”
J. Phys. Chem. Lett.
9
,
1977
1984
(
2018
).
47.
J. E.
Bishop
,
J. A.
Smith
, and
D. G.
Lidzey
, “
Development of spray-coated perovskite solar cells
,”
ACS Appl. Mater. Interfaces
12
,
48237
48245
(
2020
).
48.
K.
Kim
,
J.
Hong
,
S. G.
Hahm
,
Y.
Rho
,
T. K.
An
,
S. H.
Kim
, and
C. E.
Park
, “
Facile and microcontrolled blade coating of organic semiconductor blends for uniaxial crystal alignment and reliable flexible organic field-effect transistors
,”
ACS Appl. Mater. Interfaces
11
,
13481
13490
(
2019
).
49.
S. A.
Schneider
,
K. L.
Gu
,
H.
Yan
,
M.
Abdelsamie
,
Z.
Bao
, and
M. F.
Toney
, “
Controlling polymer morphology in blade-coated all-polymer solar cells
,”
Chem. Mater.
33
,
5951
5961
(
2021
).
50.
E.
Hecht
,
Optics
, 4th ed. (
Addison-Wesley
,
San Francisco
,
2002
).
51.
E. E.
Jelley
, “
Spectral absorption and fluorescence of dyes in the molecular state
,”
Nature
138
,
1009
1010
(
1936
).
52.
D. G.
Lidzey
,
A. M.
Fox
,
M.
Rahn
,
M. S.
Skolnick
,
V. M.
Agranovich
, and
S.
Walker
, “
Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation
,”
Phys. Rev. B
65
,
195312
(
2002
).
53.
D. M.
Coles
,
R. T.
Grant
,
D. G.
Lidzey
,
C.
Clark
, and
P. G.
Lagoudakis
, “
Imaging the polariton relaxation bottleneck in strongly coupled organic semiconductor microcavities
,”
Phys. Rev. B
88
,
121303
(
2013
).
54.
G. G.
Paschos
,
N.
Somaschi
,
S. I.
Tsintzos
,
D. M.
Coles
,
J. L.
Bricks
,
Z.
Hatzopoulos
,
D. G.
Lidzey
,
P. G.
Lagoudakis
, and
P. G.
Savvidis
, “
Hybrid organic–inorganic polariton laser
,”
Sci. Rep.
7
,
11377
(
2017
).
55.
K.
Georgiou
,
K. E.
McGhee
,
R.
Jayaprakash
, and
D. G.
Lidzey
, “
Observation of photon-mode decoupling in a strongly coupled multimode microcavity
,”
J. Chem. Phys.
154
,
124309
(
2021
).
56.
S.
Richter
,
T.
Michalsky
,
L.
Fricke
,
C.
Sturm
,
H.
Franke
,
M.
Grundmann
, and
R.
Schmidt-Grund
, “
Maxwell consideration of polaritonic quasi-particle Hamiltonians in multi-level systems
,”
Appl. Phys. Lett.
107
,
231104
(
2015
).
57.
M.
Balasubrahmaniyam
,
C.
Genet
, and
T.
Schwartz
, “
Coupling and decoupling of polaritonic states in multimode cavities
,”
Phys. Rev. B
103
,
L241407
(
2021
).
58.
M.
Godsi
,
A.
Golombek
,
M.
Balasubrahmaniyam
, and
T.
Schwartz
, “
Exploring the nature of high-order cavity polaritons under the coupling–decoupling transition
,”
J. Chem. Phys.
159
,
134307
(
2023
).
59.
V.
Savona
,
L. C.
Andreani
,
P.
Schwendimann
, and
A.
Quattropani
, “
Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes
,”
Solid State Commun.
93
,
733
739
(
1995
).
60.
L.
Tropf
and
M. C.
Gather
, “
Investigating the onset of the strong coupling regime by fine-tuning the Rabi splitting in multilayer organic microcavities
,”
Adv. Opt. Mater.
6
,
1800203
(
2018
).
61.
M.
Athanasiou
,
A.
Manoli
,
P.
Papagiorgis
,
K.
Georgiou
,
Y.
Berezovska
,
A.
Othonos
,
M. I.
Bodnarchuk
,
M. V.
Kovalenko
, and
G.
Itskos
, “
Flexible, free-standing polymer membranes sensitized by CsPbX3 nanocrystals as gain media for low threshold, multicolor light amplification
,”
ACS Photonics
9
,
2385
2397
(
2022
).
62.
P. A.
Lane
,
P. D.
Cunningham
,
J. S.
Melinger
,
O.
Esenturk
, and
E. J.
Heilweil
, “
Hot photocarrier dynamics in organic solar cells
,”
Nat. Commun.
6
,
7558
(
2015
).
63.
K.
Ohta
,
S.
Tokonami
,
K.
Takahashi
,
Y.
Tamura
,
H.
Yamada
, and
K.
Tominaga
, “
Probing charge carrier dynamics in porphyrin-based organic semiconductor thin films by time-resolved THz spectroscopy
,”
J. Phys. Chem. B
121
,
10157
10165
(
2017
).
64.
M.
Athanasiou
,
P.
Papagiorgis
,
A.
Manoli
,
C.
Bernasconi
,
M. I.
Bodnarchuk
,
M. V.
Kovalenko
, and
G.
Itskos
, “
Efficient amplified spontaneous emission from solution-processed CsPbBr3 nanocrystal microcavities under continuous wave excitation
,”
ACS Photonics
8
,
2120
2129
(
2021
).
65.
S. A.
Furman
and
A. V.
Tikhonravov
, “
Spectral characteristics of multi-layer coatings: Theory
,” in
Basics of Optics of Multilayer Systems
(
Atlantica Séguier Frontières
,
Paris
,
1992
), pp.
1
102
.

Supplementary Material

You do not currently have access to this content.