The time-dependent rotational and vibrational temperatures were measured to study the shock-heated thermal nonequilibrium behaviors of CO with Ar, He, and H2 as collision partners. Three interference-free transition lines in the fundamental vibrational band of CO were applied to the fast, in situ, and state-specific measurements. Vibrational relaxation times of CO were summarized over a temperature range of 1110–2820 K behind reflected shocks. The measured rotational temperature instantaneously reached an equilibrium state behind shock waves. The measured vibrational temperature experienced a relaxation process before reaching the equilibrium state. The measured vibrational temperature time histories were compared with predictions based on the Landau–Teller model and the state-to-state approach. The state-to-state approach treats the vibrational energy levels of CO as pseudo-species and accurately describes the detailed thermal nonequilibrium processes behind shock waves. The datasets of state-specific inelastic rate coefficients of CO–Ar, CO–He, CO–CO, and CO–H2 collisions were calculated in this study using the mixed quantum-classical method and the semiclassical forced harmonic oscillator model. The predictions based on the state-to-state approach agreed well with the measured data and nonequilibrium (non-Boltzmann) vibrational distributions were found in the post-shock regions, while the Landau–Teller model predicted slower vibrational temperature time histories than the measured data. Modifications were applied to the Millikan–White vibrational relaxation data of the CO–Ar and CO–H2 systems to improve the performance of the Landau–Teller model. In addition, the thermal nonequilibrium processes behind incident shocks, the acceleration effects of H2O on the relaxation process of CO, and the characterization of vibrational temperature were highlighted.

1.
H.
Koo
,
V.
Raman
, and
P. L.
Varghese
, “
Direct numerical simulation of supersonic combustion with thermal nonequilibrium
,”
Proc. Combust. Inst.
35
,
2145
(
2015
).
2.
R.
Fiévet
,
S.
Voelkel
,
H.
Koo
,
V.
Raman
, and
P. L.
Varghese
, “
Effect of thermal nonequilibrium on ignition in scramjet combustors
,”
Proc. Combust. Inst.
36
,
2901
(
2017
).
3.
C.
Johnston
,
A.
Brandis
, and
K.
Sutton
, “
Shock layer radiation modeling and uncertainty for Mars entry
,” in https://doi.org/10.2514/6.2012-2866
43rd AIAA Thermophysics Conference
(
American Institute of Aeronautics and Astronautics
,
2012
).
4.
B. A.
Cruden
,
D.
Prabhu
, and
R.
Martinez
, “
Absolute radiation measurement in Venus and Mars entry conditions
,”
J. Spacecr. Rockets
49
,
1069
(
2012
).
5.
A. M.
Brandis
,
C. O.
Johnston
,
B. A.
Cruden
,
D. K.
Prabhu
,
A. A.
Wray
,
Y.
Liu
,
D. W.
Schwenke
, and
D.
Bose
, “
Validation of CO 4th positive radiation for Mars entry
,”
J. Quant. Spectrosc. Radiat. Transfer
121
,
91
(
2013
).
6.
C. O.
Johnston
and
A. M.
Brandis
, “
Modeling of nonequilibrium CO Fourth-Positive and CN Violet emission in CO2–N2 gases
,”
J. Quant. Spectrosc. Radiat. Transfer
149
,
303
(
2014
).
7.
B. A.
Cruden
,
A. M.
Brandis
, and
M. E.
MacDonald
, “
Characterization of CO thermochemistry in incident shockwaves
,” in https://doi.org/10.2514/6.2018-3768
2018 Joint Thermophysics and Heat Transfer Conference
(
American Institute of Aeronautics and Astronautics
,
2018
).
8.
D.
He
,
L.
Shi
,
D.
Nativel
,
J.
Herzler
,
M.
Fikri
, and
C.
Schulz
, “
CO-concentration and temperature measurements in reacting CH4/O2 mixtures doped with diethyl ether behind reflected shock waves
,”
Combust. Flame
216
,
194
(
2020
).
9.
D.
He
,
D.
Nativel
,
J.
Herzler
,
J. B.
Jeffries
,
M.
Fikri
, and
C.
Schulz
, “
Laser-based CO concentration and temperature measurements in high-pressure shock-tube studies of n-heptane partial oxidation
,”
Appl. Phys. B
126
,
142
(
2020
).
10.
M.
Pelucchi
,
C.
Cavallotti
,
T.
Faravelli
, and
S. J.
Klippenstein
, “
H-Abstraction reactions by OH, HO2, O, O2 and benzyl radical addition to O2 and their implications for kinetic modelling of toluene oxidation
,”
Phys. Chem. Chem. Phys.
20
,
10607
(
2018
).
11.
V.
Blackman
, “
Vibrational relaxation in oxygen and nitrogen
,”
J. Fluid Mech.
1
,
61
(
1956
).
12.
W. J.
Hooker
and
R. C.
Millikan
, “
Shock-tube study of vibrational relaxation in carbon monoxide for the fundamental and first overtone
,”
J. Chem. Phys.
38
,
214
(
1963
).
13.
D. L.
Matthews
, “
Vibrational relaxation of carbon monoxide in the shock tube
,”
J. Chem. Phys.
34
,
639
(
1961
).
14.
R. C.
Millikan
, “
Carbon monoxide vibrational relaxation in mixtures with helium, neon, and krypton
,”
J. Chem. Phys.
40
,
2594
(
1964
).
15.
R. C.
Millikan
and
D. R.
White
, “
Vibrational energy exchange between N2 and CO. The vibrational relaxation of nitrogen
,”
J. Chem. Phys.
39
,
98
(
1963
).
16.
D. R.
White
and
R. C.
Millikan
, “
Vibrational relaxation in air
,”
AIAA J.
2
,
1844
(
1964
).
17.
C. J. S. M.
Simpson
,
T. R. D.
Chandler
, and
R. E.
Richards
, “
A shock tube study of vibrational relaxation in pure CO2 and mixtures of CO2 with the inert gases, nitrogen, deuterium and hydrogen
,”
Proc. R. Soc. London, Ser. A
317
,
265
(
1970
).
18.
R. C.
Millikan
and
D. R.
White
, “
Systematics of vibrational relaxation
,”
J. Chem. Phys.
39
,
3209
(
1963
).
19.
S. J.
Lukasik
and
J. E.
Young
, “
Vibrational relaxation times in nitrogen
,”
J. Chem. Phys.
27
,
1149
(
1957
).
20.
A. R.
Fairbairn
and
A. G.
Gaydon
, “
The dissociation of carbon monoxide
,”
Proc. R. Soc. London, Ser. A
312
,
207
(
1969
).
21.
J. P.
Appleton
,
M.
Steinberg
, and
D. J.
Liquornik
, “
Shock-tube study of carbon monoxide dissociation using vacuum-ultraviolet absorption
,”
J. Chem. Phys.
52
,
2205
(
1970
).
22.
R. K.
Hanson
, “
Shock-tube study of carbon monoxide dissociation kinetics
,”
J. Chem. Phys.
60
,
4970
(
1974
).
23.
H.-J.
Mick
,
M.
Burmeister
, and
P.
Roth
, “
Atomic resonance absorption spectroscopy measurements on high-temperature CO dissociation kinetics
,”
AIAA J.
31
,
671
(
1993
).
24.
R. K.
Hanson
and
D. F.
Davidson
, “
Recent advances in laser absorption and shock tube methods for studies of combustion chemistry
,”
Prog. Energy Combust. Sci.
44
,
103
(
2014
).
25.
C. S.
Goldenstein
,
R. M.
Spearrin
,
J. B.
Jeffries
, and
R. K.
Hanson
, “
Infrared laser-absorption sensing for combustion gases
,”
Prog. Energy Combust. Sci.
60
,
132
(
2017
).
26.
I.
Stranic
,
S. H.
Pyun
,
D. F.
Davidson
, and
R. K.
Hanson
, “
Multi-species measurements in 2-butanol and i-butanol pyrolysis behind reflected shock waves
,”
Combust. Flame
160
,
1012
(
2013
).
27.
S. H.
Pyun
,
W.
Ren
,
K.-Y.
Lam
,
D. F.
Davidson
, and
R. K.
Hanson
, “
Shock tube measurements of methane, ethylene and carbon monoxide time-histories in DME pyrolysis
,”
Combust. Flame
160
,
747
(
2013
).
28.
D.
He
,
D.
Zheng
,
Y.
Du
,
J.
Li
,
Y.
Ding
, and
Z.
Peng
, “
Laser-absorption-spectroscopy-based temperature and NH3-concentration time-history measurements during the oxidation processes of the shock-heated reacting NH3/H2 mixtures
,”
Combust. Flame
245
,
112349
(
2022
).
29.
D.
Zheng
,
D.
He
,
Q.-D.
Wang
,
Y.
Ding
, and
Z.
Peng
, “
Simultaneous measurements of temperature, CO, and CO2 time-history in reacting n-heptane/O2/argon mixtures blended with diethyl ether behind reflected shock waves
,”
Combust. Flame
241
,
112057
(
2022
).
30.
D.
He
,
T.
Si
,
F.
Li
, and
X.
Luo
, “
Development of interference-free rotational and vibrational thermometry for studies on shock-heated thermochemical non-equilibrium CO
,”
Meas. Sci. Technol.
34
,
125502
(
2023
).
31.
C. C.
Jelloian
,
F. A.
Bendana
,
C.
Wei
,
R. M.
Spearrin
, and
M. E.
MacDonald
, “
Nonequilibrium vibrational, rotational, and translational thermometry via megahertz laser absorption of CO
,”
J. Thermophys. Heat Transfer
36
,
266
(
2021
).
32.
C. C.
Jelloian
,
N. Q.
Minesi
, and
R. M.
Spearrin
, “
High-speed mid-infrared laser absorption spectroscopy of CO2 for shock-induced thermal non-equilibrium studies of planetary entry
,”
Appl. Phys. B
128
,
216
(
2022
).
33.
J. W.
Streicher
,
A.
Krish
, and
R. K.
Hanson
, “
Vibrational relaxation time measurements in shock-heated oxygen and air from 2000 K to 9000 K using ultraviolet laser absorption
,”
Phys. Fluids
32
,
086101
(
2020
).
34.
A.
Krish
,
J. W.
Streicher
, and
R. K.
Hanson
, “
Spectrally-resolved ultraviolet absorption measurements of shock-heated NO from 2000 K to 6000 K for the development of a two-color rotational temperature diagnostic
,”
J. Quant. Spectrosc. Radiat. Transfer
280
,
108073
(
2022
).
35.
P. M.
Finch
,
J.
Girard
,
C.
Strand
,
W.
Yu
,
J.
Austin
,
H.
Hornung
, and
R.
Hanson
, “
Measurements of time-resolved air freestream nitric oxide rotational, vibrational temperature and concentration in the T5 reflected shock tunnel
,” in https://doi.org/10.2514/6.2020-3714
AIAA Propulsion And Energy 2020 Forum
(
American Institute of Aeronautics and Astronautics
,
2020
).
36.
M. F.
Campbell
,
T.
Parise
,
A. M.
Tulgestke
,
R. M.
Spearrin
,
D. F.
Davidson
, and
R. K.
Hanson
, “
Strategies for obtaining long constant-pressure test times in shock tubes
,”
Shock Waves
25
,
651
(
2015
).
37.
D.
He
,
Y.
Ding
,
L.
Shi
,
D.
Zheng
, and
Z.
Peng
, “
Simultaneous temperature and CO-concentration time-history measurements during the pyrolysis and ultra-fuel-rich oxidation of ethanol, diethyl ether, n-heptane, and isooctane behind reflected shock waves
,”
Combust. Flame
232
,
111537
(
2021
).
38.
D. I.
Pineda
,
F. A.
Bendana
, and
R.
Mitchell Spearrin
, “
Competitive oxidation of methane and C2 hydrocarbons discerned by isotopic labeling and laser absorption spectroscopy of CO isotopologues in shock-heated mixtures
,”
Combust. Flame
224
,
54
(
2021
).
39.
C.
Park
,
Nonequilibrium Hypersonic Aerothermodynamics
(
Wiley
,
New York
,
1990
).
40.
L.
Landau
and
E.
Teller
, “
On the theory of sound dispersion
,”
Phys. Z. Sowjetunion
10
,
34
(
1936
).
41.
J. D.
Anderson
,
Hypersonic and High-Temperature Gas Dynamics
, 3rd ed. (
American Institute of Aeronautics and Astronautics, Inc.
,
Washington, DC
,
2019
).
42.
E.
Nagnibeda
and
E.
Kustova
,
Non-equilibrium Reacting Gas Flows: Kinetic Theory of Transport and Relaxation Processes
(
Springer
,
Berlin
,
2009
).
43.
M.
Panesi
,
A.
Munafò
,
T. E.
Magin
, and
R. L.
Jaffe
, “
Nonequilibrium shock-heated nitrogen flows using a rovibrational state-to-state method
,”
Phys. Rev. E
90
,
013009
(
2014
).
44.
Q.
Hong
,
X.
Wang
,
Y.
Hu
, and
Q.
Sun
, “
Development of a stagnation streamline model for thermochemical nonequilibrium flow
,”
Phys. Fluids
32
,
046102
(
2020
).
45.
I. N.
Kadochnikov
and
I. V.
Arsentiev
, “
Modelling of vibrational nonequilibrium effects on the H2–air mixture ignition under shock wave conditions in the state-to-state and mode approximations
,”
Shock Waves
30
,
491
(
2020
).
46.
I. N.
Kadochnikov
,
I. V.
Arsentiev
,
B. I.
Loukhovitski
, and
A. S.
Sharipov
, “
State-to-state vibrational kinetics of diatomic molecules in laser-induced ignition of a syngas-air mixture: Modeling study
,”
Chem. Phys.
562
,
111669
(
2022
).
47.
R. N.
Schwartz
,
Z. I.
Slawsky
, and
K. F.
Herzfeld
, “
Calculation of vibrational relaxation times in gases
,”
J. Chem. Phys.
20
,
1591
(
2004
).
48.
I. V.
Adamovich
,
S. O.
Macheret
,
J. W.
Rich
, and
C. E.
Treanor
, “
Vibrational relaxation and dissociation behind shock waves. Part 1—Kinetic rate models
,”
AIAA J.
33
,
1064
(
1995
).
49.
D. A.
Andrienko
and
I. D.
Boyd
, “
State-specific dissociation in O2–O2 collisions by quasiclassical trajectory method
,”
Chem. Phys.
491
,
74
(
2017
).
50.
Q.
Hong
,
M.
Bartolomei
,
C.
Coletti
,
A.
Lombardi
,
Q.
Sun
, and
F.
Pirani
, “
Vibrational energy transfer in CO + N2 collisions: A database for V-V and V-T/R quantum-classical rate coefficients
,”
Molecules
26
,
7152
(
2021
).
51.
X.
Wang
,
Q.
Hong
,
C.
Yang
, and
Q.
Sun
, “
Uncertainty quantification in state-specific modeling of thermal relaxation and dissociation of oxygen
,”
AIAA J.
61
,
2734
(
2023
).
52.
G.
Colonna
,
M.
Tuttafesta
,
M.
Capitelli
, and
D.
Giordano
, “
Non-arrhenius NO formation rate in one-dimensional nozzle airflow
,”
J. Thermophys. Heat Transfer
13
,
372
(
1999
).
53.
M.
Capitelli
,
R.
Celiberto
,
G.
Colonna
,
F.
Esposito
,
C.
Gorse
,
K.
Hassouni
,
A.
Laricchiuta
, and
S.
Longo
, in
Fundamental Aspects of Plasma Chemical Physics: Kinetics
, Series on Atomic, Optical, and Plasma Physics (
Springer
,
2016
), Vol.
85
.
54.
S. F.
Gimelshein
,
I. J.
Wysong
,
A. J.
Fangman
,
D. A.
Andrienko
,
O. V.
Kunova
,
E. V.
Kustova
,
C.
Garbacz
,
M.
Fossati
, and
K.
Hanquist
, “
Kinetic and continuum modeling of high-temperature oxygen and nitrogen binary mixtures
,”
J. Thermophys. Heat Transfer
36
,
399
(
2022
).
55.
S. F.
Gimelshein
,
I. J.
Wysong
,
A. J.
Fangman
,
D. A.
Andrienko
,
O. V.
Kunova
,
E. V.
Kustova
,
F.
Morgado
,
C.
Garbacz
,
M.
Fossati
, and
K. M.
Hanquist
, “
Kinetic and continuum modeling of high-temperature air relaxation
,”
J. Thermophys. Heat Transfer
36
,
870
(
2022
).
56.
L. D.
Pietanza
,
G.
Colonna
, and
M.
Capitelli
, “
Non-equilibrium plasma kinetics of reacting CO: An improved state to state approach
,”
Plasma Sources Sci. Technol.
26
,
125007
(
2017
).
57.
L. D.
Pietanza
,
G.
Colonna
,
A.
Laricchiuta
, and
M.
Capitelli
, “
Non-equilibrium electron and vibrational distributions under nanosecond repetitively pulsed CO discharges and afterglows: II. The role of radiative and quenching processes
,”
Plasma Sources Sci. Technol.
27
,
095003
(
2018
).
58.
A.
Aliat
,
A.
Chikhaoui
, and
E. V.
Kustova
, “
Nonequilibrium kinetics of a radiative CO flow behind a shock wave
,”
Phys. Rev. E
68
,
056306
(
2003
).
59.
A.
Aliat
,
E. V.
Kustova
, and
A.
Chikhaoui
, “
State-to-state reaction rates in gases with vibration–electronic–dissociation coupling: The influence on a radiative shock heated CO flow
,”
Chem. Phys.
314
,
37
(
2005
).
60.
F.
Bonelli
,
M.
Tuttafesta
,
G.
Colonna
,
L.
Cutrone
, and
G.
Pascazio
, “
An MPI-CUDA approach for hypersonic flows with detailed state-to-state air kinetics using a GPU cluster
,”
Comput. Phys. Commun.
219
,
178
(
2017
).
61.
X.
Wang
,
J.
Guo
,
Q.
Hong
, and
S.
Li
, “
High-fidelity state-to-state modeling of hypersonic flow over a double cone
,”
Phys. Fluids
35
,
116101
(
2023
).
62.
D.
He
,
T.
Si
,
M.
Fikri
, and
X.
Luo
, “
Interference-free laser-based temperature and CO-concentration measurements for shock-heated isooctane and isooctane/ethanol blends
,”
Meas. Sci. Technol.
35
,
015502
(
2024
).
63.
C. W.
vonRosenberg
,
K. N. C.
Bray
, and
N. H.
Pratt
, “
The effect of water vapor on the vibrational relaxation of CO
,”
Symp. (Int.) Combust.
13
,
89
(
1971
).
64.
L. S.
Rothman
,
I. E.
Gordon
,
R. J.
Barber
,
H.
Dothe
,
R. R.
Gamache
,
A.
Goldman
,
V. I.
Perevalov
,
S. A.
Tashkun
, and
J.
Tennyson
, “
HITEMP, the high-temperature molecular spectroscopic database
,”
J. Quant. Spectrosc. Radiat. Transfer
111
,
2139
(
2010
).
65.
I. E.
Gordon
,
L. S.
Rothman
,
R. J.
Hargreaves
,
R.
Hashemi
,
E. V.
Karlovets
,
F. M.
Skinner
,
E. K.
Conway
,
C.
Hill
,
R. V.
Kochanov
,
Y.
Tan
,
P.
Wcisło
,
A. A.
Finenko
,
K.
Nelson
,
P. F.
Bernath
,
M.
Birk
,
V.
Boudon
,
A.
Campargue
,
K. V.
Chance
,
A.
Coustenis
,
B. J.
Drouin
,
J. M.
Flaud
,
R. R.
Gamache
,
J. T.
Hodges
,
D.
Jacquemart
,
E. J.
Mlawer
,
A. V.
Nikitin
,
V. I.
Perevalov
,
M.
Rotger
,
J.
Tennyson
,
G. C.
Toon
,
H.
Tran
,
V. G.
Tyuterev
,
E. M.
Adkins
,
A.
Baker
,
A.
Barbe
,
E.
Canè
,
A. G.
Császár
,
A.
Dudaryonok
,
O.
Egorov
,
A. J.
Fleisher
,
H.
Fleurbaey
,
A.
Foltynowicz
,
T.
Furtenbacher
,
J. J.
Harrison
,
J. M.
Hartmann
,
V. M.
Horneman
,
X.
Huang
,
T.
Karman
,
J.
Karns
,
S.
Kassi
,
I.
Kleiner
,
V.
Kofman
,
F.
Kwabia–Tchana
,
N. N.
Lavrentieva
,
T. J.
Lee
,
D. A.
Long
,
A. A.
Lukashevskaya
,
O. M.
Lyulin
,
V. Y.
Makhnev
,
W.
Matt
,
S. T.
Massie
,
M.
Melosso
,
S. N.
Mikhailenko
,
D.
Mondelain
,
H. S. P.
Müller
,
O. V.
Naumenko
,
A.
Perrin
,
O. L.
Polyansky
,
E.
Raddaoui
,
P. L.
Raston
,
Z. D.
Reed
,
M.
Rey
,
C.
Richard
,
R.
Tóbiás
,
I.
Sadiek
,
D. W.
Schwenke
,
E.
Starikova
,
K.
Sung
,
F.
Tamassia
,
S. A.
Tashkun
,
J.
Vander Auwera
,
I. A.
Vasilenko
,
A. A.
Vigasin
,
G. L.
Villanueva
,
B.
Vispoel
,
G.
Wagner
,
A.
Yachmenev
, and
S. N.
Yurchenko
, “
The HITRAN2020 molecular spectroscopic database
,”
J. Quant. Spectrosc. Radiat. Transfer
277
,
107949
(
2022
).
66.
G. D.
Billing
, “
Rate constants and cross sections for vibrational transitions in atom-diatom and diatom-diatom collisions
,”
Comput. Phys. Commun.
32
,
45
(
1984
).
67.
Q.
Hong
,
M.
Bartolomei
,
F.
Esposito
,
C.
Coletti
,
Q.
Sun
, and
F.
Pirani
, “
Reconciling experimental and theoretical vibrational deactivation in low-energy O + N2 collisions
,”
Phys. Chem. Chem. Phys.
23
,
15475
(
2021
).
68.
Q.
Hong
,
M.
Bartolomei
,
F.
Pirani
,
F.
Esposito
,
Q.
Sun
, and
C.
Coletti
, “
Vibrational deactivation in O(3P) + N2 collisions: From an old problem towards its solution
,”
Plasma Sources Sci. Technol.
31
,
084008
(
2022
).
69.
G. C.
McBane
, “
A three-dimensional He–CO potential energy surface with improved long-range behavior
,”
J. Mol. Spectrosc.
330
,
211
(
2016
).
70.
C. T.
Wickham-Jones
,
H. T.
Williams
, and
C. J. S. M.
Simpson
, “
Experimental and theoretical studies of CO vibrational relaxation by He atoms
,”
J. Chem. Phys.
87
,
5294
(
1987
).
71.
M. L.
da Silva
,
V.
Guerra
, and
J.
Loureiro
, “
State-resolved dissociation rates for extremely nonequilibrium atmospheric entries
,”
J. Thermophys. Heat Transfer
21
,
40
(
2007
).
72.
Y.
Sumiyoshi
and
Y.
Endo
, “
Three-dimensional potential energy surface of Ar–CO
,”
J. Chem. Phys.
142
,
024314
(
2015
).
73.
G.
Kowzan
,
P.
Wcisło
,
M.
Słowiński
,
P.
Masłowski
,
A.
Viel
, and
F.
Thibault
, “
Fully quantum calculations of the line-shape parameters for the Hartmann-Tran profile: A CO-Ar case study
,”
J. Quant. Spectrosc. Radiat. Transfer
243
,
106803
(
2020
).
74.
O.
Denis-Alpizar
,
R. J.
Bemish
, and
M.
Meuwly
, “
Communication: Vibrational relaxation of CO(1Σ) in collision with Ar(1S) at temperatures relevant to the hypersonic flight regime
,”
J. Chem. Phys.
146
,
111102
(
2017
).
75.
J.
Chen
,
J.
Li
,
J. M.
Bowman
, and
H.
Guo
, “
Energy transfer between vibrationally excited carbon monoxide based on a highly accurate six-dimensional potential energy surface
,”
J. Chem. Phys.
153
,
054310
(
2020
).
76.
M. A.
Kovacs
and
M. E.
Mack
, “
Vibrational relaxation measurements using “Transient” stimulated Raman scattering
,”
Appl. Phys. Lett.
20
,
487
(
2003
).
77.
Q.
Hong
,
L.
Storchi
,
M.
Bartolomei
,
F.
Pirani
,
Q.
Sun
, and
C.
Coletti
, “
Inelastic N2 + H2 collisions and quantum-classical rate coefficients: Large datasets and machine learning predictions
,”
Eur. Phys. J. D
77
,
128
(
2023
).
78.
L. F.
Shampine
and
M. W.
Reichelt
, “
The MATLAB ODE suite
,”
SIAM J. Sci. Comput.
18
,
1
(
1997
).
79.
H. W.
Coleman
and
W. G.
Steele
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
, 3rd ed. (
John Wiley and Sons, Inc.
,
Hoboken, NJ
,
2009
).
80.
L.
Lotte Poulsen
and
G. D.
Billing
, “
Vibrational deactivation of CO(υ = 1) by p-H2 and o-H2
,”
Chem. Phys.
73
,
313
(
1982
).

Supplementary Material

You do not currently have access to this content.