We introduce nested gausslet bases, an improvement on previous gausslet bases that can treat systems containing atoms with much larger atomic numbers. We also introduce pure Gaussian distorted gausslet bases, which allow the Hamiltonian integrals to be performed analytically, as well as hybrid bases in which the gausslets are combined with standard Gaussian-type bases. All these bases feature the diagonal approximation for the electron–electron interactions so that the Hamiltonian is completely defined by two Nb × Nb matrices, where Nb ≈ 104 is small enough to permit fast calculations at the Hartree–Fock level. In constructing these bases, we have gained new mathematical insight into the construction of one-dimensional diagonal bases. In particular, we have proved an important theorem relating four key basis set properties: completeness, orthogonality, zero-moment conditions, and diagonalization of the coordinate operator matrix. We test our basis sets on small systems with a focus on high accuracy, obtaining, for example, an accuracy of 2 × 10−5 Ha for the total Hartree–Fock energy of the neon atom in the complete basis set limit.

1.
B. I.
Dunlap
,
Phys. Chem. Chem. Phys.
2
,
2113
(
2000
).
2.
R. M.
Parrish
,
E. G.
Hohenstein
,
T. J.
Martínez
, and
C. D.
Sherrill
,
J. Chem. Phys.
137
,
044103
(
2012
).
3.
R. M.
Parrish
,
E. G.
Hohenstein
,
T. J.
Martínez
, and
C. D.
Sherrill
,
J. Chem. Phys.
137
,
224106
(
2012
).
4.
R. M.
Parrish
,
E. G.
Hohenstein
,
N. F.
Schunck
,
C. D.
Sherrill
, and
T. J.
Martínez
,
Phys. Rev. Lett.
111
,
132505
(
2013
).
5.
J.
Lu
and
L.
Ying
,
J. Comput. Phys.
302
,
329
(
2015
).
6.
F.
Aquilante
,
T. B.
Pedersen
, and
R.
Lindh
,
J. Chem. Phys.
126
,
194106
(
2007
).
7.
F.
Gygi
and
G.
Galli
,
Phys. Rev. B
52
,
R2229
(
1995
).
8.
J. R.
Jones
,
F.-H.
Rouet
,
K. V.
Lawler
,
E.
Vecharynski
,
K. Z.
Ibrahim
,
S.
Williams
,
B.
Abeln
,
C.
Yang
,
W.
McCurdy
,
D. J.
Haxton
,
X. S.
Li
, and
T. N.
Rescigno
,
Mol. Phys.
114
,
2014
(
2016
).
9.
S. R.
White
,
J. Chem. Phys.
147
,
244102
(
2017
).
10.
S. R.
White
and
E. M.
Stoudenmire
,
Phys. Rev. B
99
,
081110
(
2019
).
11.
Y.
Qiu
and
S. R.
White
,
J. Chem. Phys.
155
,
184107
(
2021
).
12.
J. C.
Light
and
T.
Carrington
, Jr.
,
Advances in Chemical Physics
(
John Wiley & Sons Ltd.
,
2000
), pp.
263
310
.
13.
G.
Evenbly
and
S. R.
White
,
Phys. Rev. A
97
,
052314
(
2018
).
14.
T. C.
Scott
,
M.
Aubert-Frecon
, and
J.
Grotendorst
,
Chem. Phys.
324
,
323
(
2006
).
15.
D. E.
Woon
and
T. H.
Dunning
, Jr.
, “‘
Unpublished,’ as referenced in van Mourik et al.
,”
Mol. Phys.
96
,
529
547
(
1999
) (as Ref. 48).
16.
K. A.
Peterson
,
D. E.
Woon
, and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
100
,
7410
(
1994
).
18.
A. K.
Wilson
,
T.
van Mourik
, and
T. H.
Dunning
,
J. Mol. Struct.: THEOCHEM
388
,
339
(
1996
).
19.
S.
Lehtola
,
J. Chem. Phys.
152
,
134108
(
2020
).
20.
D. B.
Cook
,
Theor. Chim. Acta
58
,
155
(
1981
).
21.
P.
Wind
,
M.
Bjørgve
,
A.
Brakestad
,
G. A. S.
Gerez
,
S. R.
Jensen
,
R. D. R.
Eikås
, and
L.
Frediani
,
J. Chem. Theory Comput.
19
,
137
(
2023
).
22.
S.
Sharma
,
T.
Yanai
,
G. H.
Booth
,
C. J.
Umrigar
, and
G. K.-L.
Chan
,
J. Chem. Phys.
140
,
104112
(
2014
).
25.
B. P.
Prascher
,
D. E.
Woon
,
K. A.
Peterson
,
T. H.
Dunning
, and
A. K.
Wilson
,
Theor. Chem. Acc.
128
,
69
(
2011
).
26.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
,
J. J.
Eriksen
,
Y.
Gao
,
S.
Guo
,
J.
Hermann
,
M. R.
Hermes
,
K.
Koh
,
P.
Koval
,
S.
Lehtola
,
Z.
Li
,
J.
Liu
,
N.
Mardirossian
,
J. D.
McClain
,
M.
Motta
,
B.
Mussard
,
H. Q.
Pham
,
A.
Pulkin
,
W.
Purwanto
,
P. J.
Robinson
,
E.
Ronca
,
E. R.
Sayfutyarova
,
M.
Scheurer
,
H. F.
Schurkus
,
J. E. T.
Smith
,
C.
Sun
,
S.-N.
Sun
,
S.
Upadhyay
,
L. K.
Wagner
,
X.
Wang
,
A.
White
,
J. D.
Whitfield
,
M. J.
Williamson
,
S.
Wouters
,
J.
Yang
,
J. M.
Yu
,
T.
Zhu
,
T. C.
Berkelbach
,
S.
Sharma
,
A. Y.
Sokolov
, and
G. K.-L.
Chan
,
J. Chem. Phys.
153
,
024109
(
2020
).
27.
P. O.
Widmark
,
P. Å.
Malmqvist
, and
B. O.
Roos
, “
Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions: I. First row atoms
,”
Theor. Chim. Acta
77
,
291
306
(
1990
).
28.
W.
Kol/os
,
K.
Szalewicz
, and
H. J.
Monkhorst
,
J. Chem. Phys.
84
,
3278
(
1986
).
29.
G.
Beylkin
and
L.
Monzón
,
Appl. Comput. Harmon. Anal.
19
,
17
(
2005
).
30.
G.
Beylkin
and
L.
Monzón
,
Appl. Comput. Harmon. Anal.
28
,
131
(
2010
).
31.
I.
Daubechies
,
Ten Lectures on Wavelets
(
Society for Industrial and Applied Mathematics
,
1992
).
You do not currently have access to this content.