We performed a series of molecular dynamics simulations on monodisperse polymer melts to investigate the formation of shear banding. Under high shear rates, shear banding occurs, which is intimately accompanied by the entanglement heterogeneity. Interestingly, the same linear relationship between the end-to-end distance Ree and entanglement density Z is observed at homogeneous flow before the onset of shear banding and at the shear banding state, where Reeln(Wi0.87)ξ0Z is proposed as the criterion to describe the dynamic force balance of the molecular chain in flow with a high rate. Deviating from this relation leads to a force imbalance and results in the emergence of shear banding. We establish a scaling relation between the disentanglement rate Vd and the Weissenberg number Wi as VdWi0.87 for stable flow in homogeneous shear and shear banding states. The formation of shear banding prevents chains from further stretching and disentanglement. The transition from homogeneous shear to shear banding partially dissipates the increased free energy from shear and reduces the free energy of the system.

1.
H. P.
Schreiber
and
S. H.
Storey
, “
Molecular fractionation in capillary flow of polymer fluids
,”
J. Polym. Sci., Part B: Polym. Lett.
3
(
9
),
723
727
(
1965
).
2.
J. W.
Rudnicki
and
J. R.
Rice
, “
Conditions for the localization of deformation in pressure-sensitive dilatant materials
,”
J. Mech. Phys. Solids
23
(
6
),
371
394
(
1975
).
3.
P. S.
Steif
,
F.
Spaepen
, and
J. W.
Hutchinson
, “
Strain localization in amorphous metals
,”
Acta Metall.
30
(
2
),
447
455
(
1982
).
4.
Y. T.
Hu
and
A.
Lips
, “
Kinetics and mechanism of shear banding in an entangled micellar solution
,”
J. Rheol.
49
(
5
),
1001
1027
(
2005
).
5.
P.
Tapadia
,
S.
Ravindranath
, and
S.-Q.
Wang
, “
Banding in entangled polymer fluids under oscillatory shearing
,”
Phys. Rev. Lett.
96
(
19
),
196001
(
2006
).
6.
S. A.
Rogers
,
D.
Vlassopoulos
, and
P. T.
Callaghan
, “
Aging, yielding, and shear banding in soft colloidal glasses
,”
Phys. Rev. Lett.
100
(
12
),
128304
(
2008
).
7.
R.
Besseling
,
L.
Isa
,
P.
Ballesta
,
G.
Petekidis
,
M. E.
Cates
, and
W. C. K.
Poon
, “
Shear banding and flow-concentration coupling in colloidal glasses
,”
Phys. Rev. Lett.
105
(
26
),
268301
(
2010
).
8.
S. S.
Datta
,
A. M.
Ardekani
,
P. E.
Arratia
,
A. N.
Beris
,
I.
Bischofberger
,
G. H.
McKinley
,
J. G.
Eggers
,
J. E.
López-Aguilar
,
S. M.
Fielding
,
A.
Frishman
,
M. D.
Graham
,
J. S.
Guasto
,
S. J.
Haward
,
A. Q.
Shen
,
S.
Hormozi
,
A.
Morozov
,
R. J.
Poole
,
V.
Shankar
,
E. S. G.
Shaqfeh
,
H.
Stark
,
V.
Steinberg
,
G.
Subramanian
, and
H. A.
Stone
, “
Perspectives on viscoelastic flow instabilities and elastic turbulence
,”
Phys. Rev. Fluids
7
(
8
),
080701
(
2022
).
9.
P. T.
Callaghan
and
A. M.
Gil
, “
Rheo-NMR of semidilute polyacrylamide in water
,”
Macromolecules
33
(
11
),
4116
4124
(
2000
).
10.
P. T.
Callaghan
, “
Rheo NMR and shear banding
,”
Rheol. Acta
47
(
3
),
243
255
(
2008
).
11.
S.
Ravindranath
,
S.-Q.
Wang
,
M.
Olechnowicz
, and
R. P.
Quirk
, “
Banding in simple steady shear of entangled polymer solutions
,”
Macromolecules
41
(
7
),
2663
2670
(
2008
).
12.
P. E.
Boukany
and
S.-Q.
Wang
, “
Shear banding or not in entangled DNA solutions depending on the level of entanglement
,”
J. Rheol.
53
(
1
),
73
83
(
2008
).
13.
P. E.
Boukany
,
Y. T.
Hu
, and
S.-Q.
Wang
, “
Observations of wall slip and shear banding in an entangled DNA solution
,”
Macromolecules
41
(
7
),
2644
2650
(
2008
).
14.
P. E.
Boukany
and
S.-Q.
Wang
, “
Shear banding or not in entangled DNA solutions
,”
Macromolecules
43
(
17
),
6950
6952
(
2010
).
15.
S.
Shin
,
K. D.
Dorfman
, and
X.
Cheng
, “
Shear-banding and superdiffusivity in entangled polymer solutions
,”
Phys. Rev. E
96
(
6
),
062503
(
2017
).
16.
S.
Shin
,
K. D.
Dorfman
, and
X.
Cheng
, “
Effect of edge disturbance on shear banding in polymeric solutions
,”
J. Rheol.
62
(
6
),
1339
1345
(
2018
).
17.
S.
Shin
,
Y.
Kou
,
K. D.
Dorfman
, and
X.
Cheng
, “
Dynamics of DNA-bridged dumbbells in concentrated, shear-banding polymer solutions
,”
Macromolecules
54
(
9
),
4186
4197
(
2021
).
18.
M. C.
Burroughs
,
Y.
Zhang
,
A. M.
Shetty
,
C. M.
Bates
,
L. G.
Leal
, and
M. E.
Helgeson
, “
Flow-induced concentration nonuniformity and shear banding in entangled polymer solutions
,”
Phys. Rev. Lett.
126
(
20
),
207801
(
2021
).
19.
S.
Cheng
and
S.-Q.
Wang
, “
Is shear banding a metastable property of well-entangled polymer solutions?
,”
J. Rheol.
56
(
6
),
1413
1428
(
2012
).
20.
Y.
Li
,
M.
Hu
,
G. B.
Mckenna
,
C. J.
Dimitriou
,
G. H.
Mckinley
,
R. M.
Mick
,
D. C.
Venerus
, and
L. A.
Archer
, “
Flow field visualization of entangled polybutadiene solutions under nonlinear viscoelastic flow conditions
,”
J. Rheol.
57
(
5
),
1411
1428
(
2013
).
21.
S.-Q.
Wang
,
G.
Liu
,
S.
Cheng
,
P. E.
Boukany
,
Y.
Wang
, and
X.
Li
, “
Letter to the Editor: Sufficiently entangled polymers do show shear strain localization at high enough Weissenberg numbers
,”
J. Rheol.
58
(
4
),
1059
1069
(
2014
).
22.
Y.
Li
,
M.
Hu
,
G. B.
McKenna
,
C. J.
Dimitriou
,
G. H.
McKinley
,
R. M.
Mick
,
D. C.
Venerus
, and
L. A.
Archer
, “
Response to: Sufficiently entangled polymers do show shear strain localization at high enough Weissenberg numbers
,”
J. Rheol.
58
(
4
),
1071
1082
(
2014
).
23.
E. J.
Hemingway
and
S. M.
Fielding
, “
Edge-induced shear banding in entangled polymeric fluids
,”
Phys. Rev. Lett.
120
(
13
),
138002
(
2018
).
24.
S.-Q.
Wang
, “
From wall slip to bulk shear banding in entangled polymer solutions
,”
Macromol. Chem. Phys.
220
(
1
),
1800327
(
2019
).
25.
M.
Doi
and
S. F.
Edwards
, “
Dynamics of concentrated polymer systems. Part 4. Rheological properties
,”
J. Chem. Soc., Faraday Trans. 2
75
,
38
54
(
1979
).
26.
T. C. B.
McLeish
and
R. C.
Ball
, “
A molecular approach to the spurt effect in polymer melt flow
,”
J. Polym. Sci., Part B: Polym. Phys.
24
(
8
),
1735
1745
(
1986
).
27.
S.-Q.
Wang
,
S.
Ravindranath
,
Y.
Wang
, and
P.
Boukany
, “
New theoretical considerations in polymer rheology: Elastic breakdown of chain entanglement network
,”
J. Chem. Phys.
127
(
6
),
064903
(
2007
).
28.
Y.
Ruan
,
Y.
Lu
,
L.
An
, and
Z.-G.
Wang
, “
Nonlinear rheological behaviors in polymer melts after step shear
,”
Macromolecules
52
(
11
),
4103
4110
(
2019
).
29.
S.-Q.
Wang
,
Nonlinear Polymer Rheology: Macroscopic Phenomenology and Molecular Foundation
(
Wiley
,
Hoboken, NJ
,
2018
).
30.
S.-J.
Xie
and
K. S.
Schweizer
, “
Consequences of delayed chain retraction on the rheology and stretch dynamics of entangled polymer liquids under continuous nonlinear shear deformation
,”
Macromolecules
51
(
11
),
4185
4200
(
2018
).
31.
E.
Helfand
and
G. H.
Fredrickson
, “
Large fluctuations in polymer solutions under shear
,”
Phys. Rev. Lett.
62
(
21
),
2468
2471
(
1989
).
32.
S. M.
Fielding
and
P. D.
Olmsted
, “
Kinetics of the shear banding instability in startup flows
,”
Phys. Rev. E
68
(
3
),
036313
(
2003
).
33.
S. M.
Fielding
and
P. D.
Olmsted
, “
Flow phase diagrams for concentration-coupled shear banding
,”
Eur. Phys. J. E
11
(
1
),
65
83
(
2003
).
34.
M.
Cromer
,
G. H.
Fredrickson
, and
L. G.
Leal
, “
A study of shear banding in polymer solutions
,”
Phys. Fluids
26
(
6
),
063101
(
2014
).
35.
M.
Cromer
,
M. C.
Villet
,
G. H.
Fredrickson
,
L.
Gary Leal
,
R.
Stepanyan
, and
M. J. H.
Bulters
, “
Concentration fluctuations in polymer solutions under extensional flow
,”
J. Rheol.
57
(
4
),
1211
1235
(
2013
).
36.
S. M.
Fielding
and
P. D.
Olmsted
, “
Early stage kinetics in a unified model of shear-induced demixing and mechanical shear banding instabilities
,”
Phys. Rev. Lett.
90
(
22
),
224501
(
2003
).
37.
J. M.
Adams
,
S. M.
Fielding
, and
P. D.
Olmsted
, “
Transient shear banding in entangled polymers: A study using the Rolie-Poly model
,”
J. Rheol.
55
(
5
),
1007
1032
(
2011
).
38.
J. D.
Peterson
,
M.
Cromer
,
G. H.
Fredrickson
, and
L.
Gary Leal
, “
Shear banding predictions for the two-fluid Rolie-Poly model
,”
J. Rheol.
60
(
5
),
927
951
(
2016
).
39.
M.
Cromer
,
G. H.
Fredrickson
, and
L.
Gary Leal
, “
Concentration fluctuations in polymer solutions under mixed flow
,”
J. Rheol.
61
(
4
),
711
730
(
2017
).
40.
J. M.
Adams
and
P. D.
Olmsted
, “
Nonmonotonic models are not necessary to obtain shear banding phenomena in entangled polymer solutions
,”
Phys. Rev. Lett.
102
(
6
),
067801
(
2009
).
41.
J. D.
Peterson
,
G. H.
Fredrickson
, and
L. G.
Leal
, “
Does shear induced demixing resemble a thermodynamically driven instability?
,”
J. Rheol.
63
(
2
),
335
359
(
2019
).
42.
G.
Ver Strate
and
W.
Philippoff
, “
Phase separation in flowing polymer solutions
,”
J. Polym. Sci.: Polym. Lett. Ed.
12
(
5
),
267
275
(
1974
).
43.
H.
Krämer
and
B. A.
Wolf
, “
On the occurrence of shear-induced dissolution and shear-induced demixing within one and the same polymer/solvent system
,”
Makromol. Chem., Rapid Commun.
6
(
1
),
21
27
(
1985
).
44.
B. A.
Wolf
, “
Thermodynamic theory of flowing polymer solutions and its application to phase separation
,”
Macromolecules
17
(
4
),
615
618
(
1984
).
45.
R.
Horst
and
B. A.
Wolf
, “
Calculation of the phase separation behavior of sheared polymer blends
,”
Macromolecules
25
(
20
),
5291
5296
(
1992
).
46.
C.
Rangel-Nafaile
,
A. B.
Metzner
, and
K. F.
Wissbrun
, “
Analysis of stress-induced phase separations in polymer solutions
,”
Macromolecules
17
(
6
),
1187
1195
(
1984
).
47.
P. S.
Desai
,
B.-G.
Kang
,
M.
Katzarova
,
R.
Hall
,
Q.
Huang
,
S.
Lee
,
M.
Shivokhin
,
T.
Chang
,
D. C.
Venerus
,
J.
Mays
,
J. D.
Schieber
, and
R. G.
Larson
, “
Challenging tube and slip-link models: Predicting the linear rheology of blends of well-characterized star and linear 1,4-polybutadienes
,”
Macromolecules
49
(
13
),
4964
4977
(
2016
).
48.
S.
Shanbhag
,
R. G.
Larson
,
J.
Takimoto
, and
M.
Doi
, “
Deviations from dynamic dilution in the terminal relaxation of star polymers
,”
Phys. Rev. Lett.
87
(
19
),
195502
(
2001
).
49.
Q.
Huang
,
J.
Ahn
,
D.
Parisi
,
T.
Chang
,
O.
Hassager
,
S.
Panyukov
,
M.
Rubinstein
, and
D.
Vlassopoulos
, “
Unexpected stretching of entangled ring macromolecules
,”
Phys. Rev. Lett.
122
(
20
),
208001
(
2019
).
50.
A. L.
Borger
,
Q.
Huang
,
O.
Hassager
,
J. J. K.
Kirkensgaard
,
K.
Almdal
, and
K.
Mortensen
, “
Stretch and orientational mode decoupling in relaxation of highly stretched polymer melts
,”
Phys. Rev. Res.
2
(
4
),
043119
(
2020
).
51.
F.
Peng
,
C.
Nie
,
T.-Y.
Xu
,
J.-F.
Sheng
,
W.
Chen
,
W.-C.
Yu
, and
L.-B.
Li
, “
Entanglement on nucleation barrier of polymer crystal
,”
Chin. J. Polym. Sci.
40
(
12
),
1640
1650
(
2022
).
52.
L.-B.
Li
, “
Chain flexibility and connectivity: The uniqueness of polymer crystallization
,”
Chin. J. Polym. Sci.
41
(
1
),
7
13
(
2023
).
53.
O. K. C.
Tsui
and
H. F.
Zhang
, “
Effects of chain ends and chain entanglement on the glass transition temperature of polymer thin films
,”
Macromolecules
34
(
26
),
9139
9142
(
2001
).
54.
Y.
Ruan
,
Y.
Lu
,
L.
An
, and
Z.-G.
Wang
, “
Shear banding in entangled polymers: Stress plateau, banding location, and lever rule
,”
ACS Macro Lett.
10
,
1517
1523
(
2021
).
55.
M.
Mohagheghi
and
B.
Khomami
, “
Molecular processes leading to shear banding in well entangled polymeric melts
,”
ACS Macro Lett.
4
(
7
),
684
688
(
2015
).
56.
M.
Mohagheghi
and
B.
Khomami
, “
Elucidating the flow-microstructure coupling in entangled polymer melts. Part II: Molecular mechanism of shear banding
,”
J. Rheol.
60
(
5
),
861
872
(
2016
).
57.
M.
Mohagheghi
and
B.
Khomami
, “
Molecularly based criteria for shear banding in transient flow of entangled polymeric fluids
,”
Phys. Rev. E
93
(
6
),
062606
(
2016
).
58.
T.
Zhao
,
X.
Wang
,
L.
Jiang
, and
R. G.
Larson
, “
Dissipative particle dynamics simulation of dilute polymer solutions—Inertial effects and hydrodynamic interactions
,”
J. Rheol.
58
(
4
),
1039
1058
(
2014
).
59.
J.
Cao
and
A. E.
Likhtman
, “
Shear banding in molecular dynamics of polymer melts
,”
Phys. Rev. Lett.
108
(
2
),
028302
(
2012
).
60.
S.
Jamali
,
G. H.
McKinley
, and
R. C.
Armstrong
, “
Microstructural rearrangements and their rheological implications in a model thixotropic elastoviscoplastic fluid
,”
Phys. Rev. Lett.
118
(
4
),
048003
(
2017
).
61.
M.
Mohagheghi
and
B.
Khomami
, “
Elucidating the flow-microstructure coupling in the entangled polymer melts. Part I: Single chain dynamics in shear flow
,”
J. Rheol.
60
(
5
),
849
859
(
2016
).
62.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in 't Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
,
S. J.
Plimpton
, “
LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
63.
K.
Kremer
and
G. S.
Grest
, “
Dynamics of entangled linear polymer melts: A molecular-dynamics simulation
,”
J. Chem. Phys.
92
(
8
),
5057
5086
(
1990
).
64.
R.
Auhl
et al, “
Equilibration of long chain polymer melts in computer simulations
,”
J. Chem. Phys.
119
,
12718
(
2003
).
65.
M.
Kröger
, “
Shortest multiple disconnected path for the analysis of entanglements in two- and three-dimensional polymeric systems
,”
Comput. Phys. Commun.
168
(
3
),
209
232
(
2005
).
66.
S.
Shanbhag
and
M.
Kröger
, “
Primitive path networks generated by annealing and geometrical methods: Insights into differences
,”
Macromolecules
40
(
8
),
2897
2903
(
2007
).
67.
R. S.
Hoy
,
K.
Foteinopoulou
, and
M.
Kröger
, “
Topological analysis of polymeric melts: Chain-length effects and fast-converging estimators for entanglement length
,”
Phys. Rev. E
80
(
3
),
031803
(
2009
).
68.
N. C.
Karayiannis
and
M.
Kröger
, “
Combined molecular algorithms for the generation, equilibration and topological analysis of entangled polymers: Methodology and performance
,”
Int. J. Mol. Sci.
10
(
11
),
5054
5089
(
2009
).
69.
M.
Kröger
,
J. D.
Dietz
,
R. S.
Hoy
, and
C.
Luap
, “
The Z1+ package: Shortest multiple disconnected path for the analysis of entanglements in macromolecular systems
,”
Comput. Phys. Commun.
283
,
108567
(
2023
).
70.
T.
Yamamoto
, “
Molecular dynamics simulation of stretch-induced crystallization in polyethylene: Emergence of fiber structure and molecular network
,”
Macromolecules
52
(
4
),
1695
1706
(
2019
).
71.
R.
Yuan
and
S.-Q.
Wang
, “
Inhomogeneous chain relaxation of entangled polymer melts from stepwise planar extension in absence of free surface
,”
J. Rheol.
64
(
5
),
1251
1262
(
2020
).
72.
K. S.
Schweizer
and
S.-J.
Xie
, “
Physics of the stress overshoot and chain stretch dynamics of entangled polymer liquids under continuous startup nonlinear shear
,”
ACS Macro Lett.
7
(
2
),
218
222
(
2018
).
73.
H.
Gong
,
J.-F.
Li
,
H.-D.
Zhang
, and
A.-C.
Shi
, “
Force-extension curve of an entangled polymer chain: A superspace approach
,”
Chin. J. Polym. Sci.
39
(
11
),
1345
1350
(
2021
).
74.
M.
Rubinstein
and
R. H.
Colby
,
Polymer Physics
(
Oxford University Press
,
2003
).
75.
S.-Q.
Wang
,
S.
Ravindranath
, and
P. E.
Boukany
, “
Homogeneous shear, wall slip, and shear banding of entangled polymeric liquids in simple-shear rheometry: A roadmap of nonlinear rheology
,”
Macromolecules
44
(
2
),
183
190
(
2011
).

Supplementary Material

You do not currently have access to this content.