Alkali halides are known to exhibit interface electronic states (IES) when deposited on metal surfaces with ultra-thin coverage. Here, we examine the IES formed by sub-monolayer RbI growth on Ag(111), which exhibits spatial variations in electronic structure in surprising contrast to the results previously obtained for other alkali halides. We find that this spatially dependent behavior can be qualitatively modeled by using a two-dimensional cosine potential commensurate with the moiré superstructure, where the IES is constructed from the well-known analytical solutions to the Mathieu equation. Our results indicate this potential is more corrugated than for similar potentials reported for other alkali halides, a result of substrate–adlayer charge transfer interactions that are stronger for RbI. This two-dimensional effective potential leads to anisotropy in the effective electron mass, in surprising contrast to previous results for other alkali halides, which report a single isotropic mass.

1.
I.
Piquero-Zulaica
et al,
Rev. Mod. Phys.
94
,
045008
(
2022
).
3.
N.
Nicoara
,
J.
Méndez
, and
J. M.
Gómez-Rodríguez
,
Nanotechnology
27
,
475707
(
2016
).
4.
A.
Sabitova
,
R.
Temirov
, and
F. S.
Tautz
,
Phys. Rev. B
98
,
205429
(
2018
).
5.
L.
Eschmann
et al,
Phys. Rev. B
100
,
125155
(
2019
).
6.
J. Y.
Park
et al,
Phys. Rev. B
62
,
R16341
(
2000
).
7.
H. F.
Bowen
and
B.
Space
,
J. Chem. Phys.
107
,
1922
(
1997
).
8.
M.
Wolf
,
E.
Knoesel
, and
T.
Hertel
,
Phys. Rev. B
54
,
R5295
(
1996
).
9.
H.
Hövel
,
B.
Grimm
, and
B.
Reihl
,
Surf. Sci.
477
,
43
(
2001
).
10.
K.
Kolpatzeck
et al,
Phys. Rev. B
107
,
155418
(
2023
).
11.
S. C.
Heidorn
,
A.
Sabellek
, and
K.
Morgenstern
,
Nano Lett.
14
,
13
(
2014
).
12.
S.
Heidorn
et al,
J. Phys. Chem. C
117
,
16095
(
2013
).
13.
J.
Repp
,
G.
Meyer
, and
K. H.
Rieder
,
Phys. Rev. Lett.
92
,
4
(
2004
).
14.
15.
K.
Schouteden
et al,
J. Phys. Chem. C
118
,
18271
(
2014
).
16.
K.
Lauwaet
et al,
J. Phys.: Condens. Matter
24
,
475507
(
2012
).
18.
M.
Omidian
et al,
Surf. Sci.
699
,
121638
(
2020
).
19.
M.
Ziegler
et al,
Phys. Rev. B
79
,
075401
(
2009
).
21.
Y.
Xiao
,
J.
Liu
, and
L.
Fu
,
Matter
3
,
1142
(
2020
).
22.
J. M. B.
Lopes dos Santos
,
N. M. R.
Peres
, and
A. H.
Castro Neto
,
Phys. Rev. Lett.
99
,
256802
(
2007
).
24.
A.
Varykhalov
et al,
Phys. Rev. Lett.
101
,
157601
(
2008
).
26.
C.
Brun
,
T.
Cren
, and
D.
Roditchev
,
Supercond. Sci. Technol.
30
,
013003
(
2016
).
27.
D.
Fröhlich
and
B.
Staginnus
,
Phys. Rev. Lett.
19
,
496
(
1967
).
28.
F. C.
Brown
et al,
Phys. Rev. B
2
,
2126
(
1970
).
29.
M.
Pivetta
et al,
Phys. Rev. B
72
,
115404
(
2005
).
30.
W.
Hebenstreit
et al,
Surf. Sci.
424
,
L321
(
1999
).
32.
F. E.
Olsson
and
M.
Persson
,
Surf. Sci.
540
,
172
(
2003
).
33.
F. E.
Olsson
et al,
Phys. Rev. B
71
,
075419
(
2005
).
34.
35.
B. W.
McDowell
et al,
J. Phys. Chem. Lett.
14
,
3023
(
2023
).
36.
J. D.
Hackley
et al,
Rev. Sci. Instrum.
85
,
103704
(
2014
).
37.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
38.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
39.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
40.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
41.
43.
J. P.
Perdew
et al,
Phys. Rev. Lett.
100
,
136406
(
2008
).
44.
K.
Momma
and
F.
Izumi
,
J. Appl. Crystallogr.
44
,
1272
(
2011
).
45.
K.
Quertite
et al,
Nanotechnology
33
,
095706
(
2021
).
46.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
, 9th printing (
Dover
,
New York
,
1972
).
47.
D.
Zwillinger
,
Handbook of Differential Equations
, 3rd ed. (
Acadamic Press
,
Boston
,
1997
).
48.
F.
Reinert
et al,
Phys. Rev. B
63
,
115415
(
2001
).

Supplementary Material

You do not currently have access to this content.