Theoretical prediction of interfacial capacitance in graphene-based supercapacitors is crucial to accelerating materials’ design and development cycles. However, there is currently a significant gap between ab initio predictions and experimental reports, particularly in the case of nitrogen-doped graphene. Analyses based on changes to the density of states of freestanding graphene upon doping do not account for the electronic interactions between the electrode, dopants, and substrates. The result is an overestimation of the doping-induced capacitance increase by up to two orders of magnitude. Moreover, it is unclear whether electrolyte and solvent interactions can further complicate matters by inducing changes to the band structure and, therefore, the capacitive properties of the electrode. A third complication lies in the fixed-band approximation, where materials are simulated without accounting for the influence of an external electrical field. In this work, we present an interfacial modeling and characterization procedure that leverages the combined strengths of ab-initio molecular dynamics, density functional theory, and microscopic polarization theory to produce reliable predictions of interfacial capacitance. The procedure is applied to two case studies of interest in supercapacitor design: (1) nitrogen-doped graphene on a Cu(111) substrate and (2) an interface between bulk water and Cu(111)-supported graphene at room temperature. Results show that water alters graphene’s band structure from a semi-metallic to an n-doped-semiconducting character and that metallic substrates dominate the band structure of the electrode interface even in the presence of dopants. The water interface also shows an asymmetric capacitive response relative to the polarity of the applied field.

1.
P. T.
Araujo
,
M.
Terrones
, and
M. S.
Dresselhaus
, “
Defects and impurities in graphene-like materials
,”
Mater. Today
15
,
98
(
2012
).
2.
J.
Zhu
,
A. S.
Childress
,
M.
Karakaya
,
S.
Dandeliya
,
A.
Srivastava
,
Y.
Lin
,
A. M.
Rao
, and
R.
Podila
, “
Defect-engineered graphene for high-energy- and high-power-density supercapacitor devices
,”
Adv. Mater.
28
(
33
),
7185
7192
(
2016
).
3.
J.
Chen
,
Y.
Han
,
X.
Kong
,
X.
Deng
,
H. J.
Park
,
Y.
Guo
,
S.
Jin
,
Z.
Qi
,
Z.
Lee
,
Z.
Qiao
,
R. S.
Ruoff
, and
H.
Ji
, “
The origin of improved electrical double-layer capacitance by inclusion of topological defects and dopants in graphene for supercapacitors
,”
Angew. Chem., Int. Ed.
55
(
44
),
13822
13827
(
2016
).
4.
H. M.
Jeong
,
J. W.
Lee
,
W. H.
Shin
,
Y. J.
Choi
,
H. J.
Shin
,
J. K.
Kang
, and
J. W.
Choi
, “
Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes
,”
Nano Lett.
11
(
6
),
2472
2477
(
2011
).
5.
T.
Wang
,
L.-X.
Wang
,
D.-L.
Wu
,
W.
Xia
, and
D.-Z.
Jia
, “
Interaction between nitrogen and sulfur in co-doped graphene and synergetic effect in supercapacitor
,”
Sci. Rep.
5
,
9591
(
2015
).
6.
H.
Wang
,
T.
Maiyalagan
, and
X.
Wang
, “
Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications
,”
ACS Catal.
2
,
781
(
2012
).
7.
F.
Hassan
,
V.
Chabot
,
J.
Li
,
B.
Kim
,
L.
Ricardez-Sandoval
, and
A.
Yu
, “
Pyrrolic-structure enriched nitrogen doped graphene for highly efficient next generation supercapacitors
,”
J. Mater. Chem. A
1
,
2904
(
2013
).
8.
V.
Sahu
et al, “
Heavily nitrogen doped, graphene supercapacitor from silk cocoon
,”
Electrochim. Acta
160
,
244
(
2015
).
9.
M. D.
Radin
,
T.
Ogitsu
,
J.
Biener
,
M.
Otani
, and
B. C.
Wood
, “
Capacitive charge storage at an electrified interface investigated via direct first-principles simulations
,”
Phys. Rev. B
91
(
12
),
125415
(
2015
).
10.
E. V.
Castro
,
K. S.
Novoselov
,
S. V.
Morozov
,
N. M. R.
Peres
,
J. M. B.
Lopes dos Santos
,
J.
Nilsson
,
F.
Guinea
,
A. K.
Geim
, and
A. H.
Castro Neto
, “
Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect
,”
Phys. Rev. Lett.
99
(
21
),
216802
(
2007
).
11.
E. J. G.
Santos
and
E.
Kaxiras
, “
Electric-field dependence of the effective dielectric constant in graphene
,”
Nano Lett.
13
,
898
902
(
2013
).
12.
J.
Zheng
,
Y.
Wang
,
L.
Wang
,
R.
Quhe
,
Z.
Ni
,
W.
Mei
,
Z.
Gao
,
D.
Yu
,
J.
Shi
, and
J.
Lu
, “
Interfacial properties of bilayer and trilayer graphene on metal substrates
,”
Sci. Rep.
3
,
2081
(
2013
).
13.
A.
Groß
and
S.
Sakong
, “
Modelling the electric double layer at electrode/electrolyte interfaces
,”
Curr. Opin. Electrochem.
14
,
1
6
(
2019
).
14.
L. D.
Chen
,
M.
Bajdich
,
J. M. P.
Martirez
,
C. M.
Krauter
,
J. A.
Gauthier
,
E. A.
Carter
,
A. C.
Luntz
,
K.
Chan
, and
J. K.
Nørskov
, “
Understanding the apparent fractional charge of protons in the aqueous electrochemical double layer
,”
Nat. Commun.
9
(
1
),
3202
(
2018
).
15.
J. H.
Chang
,
A.
Huzayyin
,
K.
Lian
, and
F.
Dawson
, “
Challenges in developing an accurate predictive model for electrochemical energy storage devices
,” in
9th International Conference on Power Electronics-ECCE Asia
,
Seoul
,
2015
.
16.
S.
Sakong
and
A.
Groß
, “
The electric double layer at metal-water interfaces revisited based on a charge polarization scheme
,”
J. Chem. Phys.
149
(
8
),
084705
(
2018
).
17.
A.
Bouzid
and
A.
Pasquarello
, “
Atomic-scale simulation of electrochemical processes at electrode/water interfaces under referenced bias potential
,”
J. Phys. Chem. Lett.
9
(
8
),
1880
1884
(
2018
).
18.
F.
Pizzocchero
,
B. S.
Jessen
,
L.
Gammelgaard
,
A.
Andryieuski
,
P. R.
Whelan
,
A.
Shivayogimath
,
J. M.
Caridad
,
J.
Kling
,
N.
Petrone
,
P. T.
Tang
,
R.
Malureanu
,
J.
Hone
,
T. J.
Booth
,
A.
Lavrinenko
, and
P.
Bøggild
, “
Chemical vapor-deposited graphene on ultraflat copper foils for van der Waals hetero-assembly
,”
ACS Omega
7
(
26
),
22626
22632
(
2022
).
19.
T.
Blecha
,
Z.
Vlčková Živcová
,
F. J.
Sonia
,
M.
Mergl
,
O.
Volochanskyi
,
M.
Bodnár
,
P.
Rous
,
K.
Mizohata
,
M.
Kalbáč
, and
O.
Frank
, “
Electrical contact resistance of large-area graphene on pre-patterned Cu and Au electrodes
,”
Nanomaterials
12
(
24
),
4444
(
2022
).
20.
M. K.
Elshazly
,
J. H.
Chang
,
A.
Huzayyin
, and
F.
Dawson
, “
Influence of Cu(111) and Ni(111) substrates on the capacitances of monolayer and bilayer graphene supercapacitor electrodes
,”
J. Phys. Chem. C
123
(
5
),
2783
2791
(
2019
).
21.
C.
Gahl
,
U.
Bovensiepen
,
C.
Frischkorn
,
K.
Morgenstern
,
K.-H.
Rieder
, and
M.
Wolf
, “
Ultrafast electron solvation dynamics in D2O/Cu(111): Influence of coverage and structure
,”
Surf. Sci.
532–535
,
108
112
(
2003
).
22.
L.
Gao
,
J. R.
Guest
, and
N. P.
Guisinger
, “
Epitaxial graphene on Cu(111)
,”
Nano Lett.
10
(
9
),
3512
3516
(
2010
).
23.
X.
Li
,
J.
Feng
,
E.
Wang
,
S.
Meng
,
J.
Klimeš
, and
A.
Michaelides
, “
Influence of water on the electronic structure of metal-supported graphene: Insights from van der Waals density functional theory
,”
Phys. Rev. B
85
,
085425
(
2012
).
24.
H. H.
Heenen
,
J. A.
Gauthier
,
H. H.
Kristoffersen
,
T.
Ludwig
, and
K.
Chan
, “
Solvation at metal/water interfaces: An ab initio molecular dynamics benchmark of common computational approaches
,”
J. Chem. Phys.
152
(
14
),
144703
(
2020
).
25.
H.
Lim
,
J.
Jung
,
H. J.
Yang
, and
Y.
Kim
, “
Lattice-contraction-induced moiré patterns in direction-controlled epitaxial graphene on Cu(111)
,”
Adv. Mater. Interfaces
1
(
2
),
1300080
(
2014
).
26.
J. H.
Chang
,
A.
Huzayyin
,
K.
Lian
, and
F.
Dawson
, “
Quantum capacitance of graphene in contact with metal
,”
Appl. Phys. Lett.
107
,
193902
(
2015
).
27.
B.
Wood
,
T.
Ogitsu
,
M.
Otani
, and
J.
Biener
, “
First-principles-inspired design strategies for graphene-based supercapacitor electrodes
,”
J. Phys. Chem. C
118
(
1
),
4
15
(
2014
).
28.
M.
Elshazly
, “
Quantum mechanical characterization of substrated bilayer graphene for future supercapacitor applications
,” Master's thesis (
University of Toronto
,
2018
).
29.
N. A.
Elessawy
,
J.
El Nady
,
W.
Wazeer
, and
A. B.
Kashyout
, “
Development of high-performance supercapacitor based on a novel controllable green synthesis for 3D nitrogen doped graphene
,”
Sci. Rep.
9
(
1
),
1129
(
2019
).
30.
J.
Zhou
,
Q.
Chen
,
Y.
Han
, and
S.
Zheng
, “
Enhanced catalytic hydrodechlorination of 2,4-dichlorophenol over Pd catalysts supported on nitrogen-doped graphene
,”
RSC Adv.
5
(
111
),
91363
91371
(
2015
).
31.
A.
Huzayyin
and
F.
Dawson
, “
Analysis of interfacial water multilayers on Au(111) surface
,”
J. Electroanal. Chem.
748
,
8
(
2015
).
32.
J. D.
Jackson
,
Classical Electrodynamics
(
John Wiley & Sons
,
New York
,
1962
).
33.
K. M.
Gameel
,
M. K.
Elshazly
,
A.
Huzayyin
, and
F.
Dawson
, “
A first-principles approach to modeling interfacial capacitance in graphene-based electrodes
,”
J. Phys. Chem. C
127
(
28
),
13987
13995
(
2023
).
34.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
et al, “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
35.
P.
Giannozzi
,
O.
Andreussi
,
T.
Brumme
,
O.
Bunau
,
M.
Buongiorno Nardelli
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
M.
Cococcioni
,
N.
Colonna
,
I.
Carnimeo
,
A.
Dal Corso
,
S.
de Gironcoli
,
P.
Delugas
,
R. A.
DiStasio
,
A.
Ferretti
,
A.
Floris
,
G.
Fratesi
et al, “
Advanced capabilities for materials modelling with Quantum ESPRESSO
,”
J. Phys.: Condens. Matter
29
(
46
),
465901
(
2017
).
36.
P.
Giannozzi
,
O.
Baseggio
,
P.
Bonfà
,
D.
Brunato
,
R.
Car
,
I.
Carnimeo
,
C.
Cavazzoni
,
S.
de Gironcoli
,
P.
Delugas
,
F.
Ferrari Ruffino
,
A.
Ferretti
,
N.
Marzari
,
I.
Timrov
,
A.
Urru
, and
S.
Baroni
, “
Quantum ESPRESSO toward the exascale
,”
J. Chem. Phys.
152
(
15
),
154105
(
2020
).
37.
R.
Sabatini
,
T.
Gorni
, and
S.
de Gironcoli
, “
Nonlocal van der Waals density functional made simple and efficient
,”
Phys. Rev. B
87
(
4
),
041108
(
2013
).
38.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
(
24
),
17953
17979
(
1994
).
39.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
(
3
),
1758
1775
(
1999
).
40.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
(
12
),
5188
5192
(
1976
).
41.
L.
Bengtsson
, “
Dipole correction for surface supercell calculations
,”
Phys. Rev. B
59
(
19
),
12301
(
1999
).
42.
N.
Marzari
,
D.
Vanderbilt
,
A.
De Vita
, and
M. C.
Payne
, “
Thermal contraction and disordering of the Al(110) surface
,”
Phys. Rev. Lett.
82
(
16
),
3296
3299
(
1999
).
43.
A.
Hjorth Larsen
,
J.
Jørgen Mortensen
,
J.
Blomqvist
,
I. E.
Castelli
,
R.
Christensen
,
M.
Dułak
,
J.
Friis
,
M. N.
Groves
,
B.
Hammer
,
C.
Hargus
,
E. D.
Hermes
,
P. C.
Jennings
,
P.
Bjerre Jensen
,
J.
Kermode
et al, “
The atomic simulation environment—A Python library for working with atoms
,”
J. Phys.: Condens. Matter
29
(
27
),
273002
(
2017
).
44.
S. A.
Adelman
and
J. D.
Doll
, “
Generalized Langevin equation approach for atom/solid-surface scattering: General formulation for classical scattering off harmonic solids
,”
J. Chem. Phys.
64
(
6
),
2375
2388
(
1976
).
45.
ASE Developers, Molecular dynamics, available https://wiki.fysik.dtu.dk/ase/ase/md.html, accessed 11 September 2021.
46.
A.
Kokalj
, “
XCrySDen—A new program for displaying crystalline structures and electron densities
,”
J. Mol. Graphics Modell.
17
(
3–4
),
176
179
(
1999
).
47.
X.
Ning
,
Y.
Li
,
J.
Ming
,
Q.
Wang
,
H.
Wang
,
Y.
Cao
,
F.
Peng
,
Y.
Yang
, and
H.
Yu
, “
Electronic synergism of pyridinic- and graphitic-nitrogen on N-doped carbons for the oxygen reduction reaction
,”
Chem. Sci.
10
(
6
),
1589
1596
(
2019
).
48.
P. A.
Khomyakov
,
G.
Giovannetti
,
P. C.
Rusu
,
G.
Brocks
,
J.
van den Brink
, and
P. J.
Kelly
, “
First-principles study of the interaction and charge transfer between graphene and metals
,”
Phys. Rev. B
79
(
19
),
195425
(
2009
).
49.
C.
Gong
,
G.
Lee
,
B.
Shan
,
E. M.
Vogel
,
R. M.
Wallace
, and
K.
Cho
, “
First-principles study of metal–graphene interfaces
,”
J. Appl. Phys.
108
(
12
),
123711
(
2010
).

Supplementary Material

You do not currently have access to this content.