We analyze from a theoretical perspective recent experiments where chiral discrimination in biological systems was established using Atomic Force Microscopy (AFM). Even though intermolecular forces involved in AFM measurements have different origins, i.e., electrostatic, bonding, exchange, and multipole interactions, the key molecular forces involved in enantiospecific biorecognition are electronic spin exchange and van der Waals (vdW) dispersion forces, which are sensitive to spin–orbit interaction (SOI) and space-inversion symmetry breaking in chiral molecules. The vdW contribution to chiral discrimination emerges from the inclusion of SOI and spin fluctuations due to the chiral-induced selectivity effect, a result we have recently demonstrated theoretically. Considering these two enantiospecific contributions, we show that the AFM results regarding chiral recognition can be understood in terms of a simple physical model that describes the different adhesion forces associated with different electron spin polarization generated in the (DD), (LL), and (DL) enantiomeric pairs, as arising from the spin part of the exchange and vdW contributions. The model can successfully produce physically reasonable parameters accounting for the vdW and exchange interaction strength, accounting for the chiral discrimination effect. This fact has profound implications in biorecognition where the relevant intermolecular interactions in the intermediate-distance regime are clearly connected to vdW forces.

1.
A.
García-Etxarri
,
J. M.
Ugalde
,
J. J.
Sáenz
, and
V.
Mujica
, “
Field-mediated chirality information transfer in molecule–nanoparticle hybrids
,”
J. Phys. Chem. C
124
(
2
),
1560
1565
(
2020
).
2.
R.
Naaman
,
Y.
Paltiel
, and
D. H.
Waldeck
, “
Chiral molecules and the spin selectivity effect
,”
J. Phys. Chem. Lett.
11
(
9
),
3660
3666
(
2020
).
3.
A.
Kumar
,
E.
Capua
,
M. K.
Kesharwani
,
J. M. L.
Martin
,
E.
Sitbon
,
D. H.
Waldeck
, and
R.
Naaman
, “
Chirality-induced spin polarization places symmetry constraints on biomolecular interactions
,”
Proc. Natl. Acad. Sci. U. S. A.
114
(
10
),
2474
2478
(
2017
).
4.
K.
Banerjee-Ghosh
,
S.
Ghosh
,
H.
Mazal
,
I.
Riven
,
G.
Haran
, and
R.
Naaman
, “
Long-range charge reorganization as an allosteric control signal in proteins
,”
J. Am. Chem. Soc.
142
(
48
),
20456
20462
(
2020
).
5.
R.
Naaman
,
Y.
Paltiel
, and
D. H.
Waldeck
, “
Chiral induced spin selectivity and its implications for biological functions
,”
Annu. Rev. Biophys.
51
(
1
),
99
114
(
2022
).
6.
Y.
Kapon
,
A.
Saha
,
T.
Duanis-Assaf
,
T.
Stuyver
,
A.
Ziv
,
T.
Metzger
,
S.
Yochelis
,
S.
Shaik
,
R.
Naaman
,
M.
Reches
, and
Y.
Paltiel
, “
Evidence for new enantiospecific interaction force in chiral biomolecules
,”
Chem
7
(
10
),
2787
2799
(
2021
).
7.
S.
Yeganeh
,
M. A.
Ratner
,
E.
Medina
, and
V.
Mujica
, “
Chiral electron transport: Scattering through helical potentials
,”
J. Chem. Phys.
131
(
1
),
014707
(
2009
).
8.
A.-M.
Guo
and
Q.
Sun
, “
Spin-selective transport of electrons in DNA double helix
,”
Phys. Rev. Lett.
108
(
21
),
218102
(
2012
).
9.
R.
Gutierrez
,
E.
Díaz
,
C.
Gaul
,
T.
Brumme
,
F.
Domínguez-Adame
, and
G.
Cuniberti
, “
Modeling spin transport in helical fields: Derivation of an effective low-dimensional Hamiltonian
,”
J. Phys. Chem. C
117
(
43
),
22276
22284
(
2013
).
10.
K.
Michaeli
and
R.
Naaman
, “
Origin of spin-dependent tunneling through chiral molecules
,”
J. Phys. Chem. C
123
(
27
),
17043
17048
(
2019
).
11.
E.
Medina
,
L. A.
González-Arraga
,
D.
Finkelstein-Shapiro
,
B.
Berche
, and
V.
Mujica
, “
Continuum model for chiral induced spin selectivity in helical molecules
,”
J. Chem. Phys.
142
(
19
),
194308
(
2015
).
12.
M.
Geyer
,
R.
Gutierrez
, and
G.
Cuniberti
, “
Effective Hamiltonian model for helically constrained quantum systems within adiabatic perturbation theory: Application to the chirality-induced spin selectivity (CISS) effect
,”
J. Chem. Phys.
152
(
21
),
214105
(
2020
).
13.
R.
Gutierrez
,
E.
Díaz
,
R.
Naaman
, and
G.
Cuniberti
, “
Spin-selective transport through helical molecular systems
,”
Phys. Rev. B
85
(
8
),
081404
(
2012
).
14.
S.
Matityahu
,
Y.
Utsumi
,
A.
Aharony
,
O.
Entin-Wohlman
, and
C. A.
Balseiro
, “
Spin-dependent transport through a chiral molecule in the presence of spin-orbit interaction and nonunitary effects
,”
Phys. Rev. B
93
(
7
),
075407
(
2016
).
15.
S.
Dalum
and
P.
Hedegård
, “
Theory of chiral induced spin selectivity
,”
Nano Lett.
19
(
8
),
5253
5259
(
2019
).
16.
C.
Vittmann
,
R. K.
Kessing
,
J.
Lim
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Interface-induced conservation of momentum leads to chiral-induced spin selectivity
,”
J. Phys. Chem. Lett.
13
(
7
),
1791
1796
(
2022
).
17.
E.
Díaz
,
F.
Domínguez-Adame
,
R.
Gutierrez
,
G.
Cuniberti
, and
V.
Mujica
, “
Thermal decoherence and disorder effects on chiral-induced spin selectivity
,”
J. Phys. Chem. Lett.
9
(
19
),
5753
5758
(
2018
).
18.
J.
Fransson
, “
Charge and spin dynamics and enantioselectivity in chiral molecules
,”
J. Phys. Chem. Lett.
13
(
3
),
808
814
(
2022
).
19.
J.
Fransson
, “
Charge redistribution and spin polarization driven by correlation induced electron exchange in chiral molecules
,”
Nano Lett.
21
(
7
),
3026
3032
(
2021
).
20.
J.
Fransson
, “
Chirality-induced spin selectivity: The role of electron correlations
,”
J. Phys. Chem. Lett.
10
(
22
),
7126
7132
(
2019
).
21.
B.
Göhler
,
V.
Hamelbeck
,
T. Z.
Markus
,
M.
Kettner
,
G. F.
Hanne
,
Z.
Vager
,
R.
Naaman
, and
H.
Zacharias
, “
Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA
,”
Science
331
(
6019
),
894
897
(
2011
).
22.
Z.
Xie
,
T. Z.
Markus
,
S. R.
Cohen
,
Z.
Vager
,
R.
Gutierrez
, and
R.
Naaman
, “
Spin specific electron conduction through DNA oligomers
,”
Nano Lett.
11
(
11
),
4652
4655
(
2011
).
23.
S.
Ghosh
,
S.
Mishra
,
E.
Avigad
,
B. P.
Bloom
,
L. T.
Baczewski
,
S.
Yochelis
,
Y.
Paltiel
,
R.
Naaman
, and
D. H.
Waldeck
, “
Effect of chiral molecules on the electron’s spin wavefunction at interfaces
,”
J. Phys. Chem. Lett.
11
(
4
),
1550
1557
(
2020
).
24.
S.
Mishra
,
A. K.
Mondal
,
E. Z. B.
Smolinsky
,
R.
Naaman
,
K.
Maeda
,
T.
Nishimura
,
T.
Taniguchi
,
T.
Yoshida
,
K.
Takayama
, and
E.
Yashima
, “
Spin filtering along chiral polymers
,”
Angew. Chem., Int. Ed.
59
(
34
),
14671
14676
(
2020
).
25.
M.
Kettner
,
B.
Göhler
,
H.
Zacharias
,
D.
Mishra
,
V.
Kiran
,
R.
Naaman
,
C.
Fontanesi
,
D. H.
Waldeck
,
S.
Sęk
,
J.
Pawłowski
, and
J.
Juhaniewicz
, “
Spin filtering in electron transport through chiral oligopeptides
,”
J. Phys. Chem. C
119
(
26
),
14542
14547
(
2015
).
26.
M.
Kettner
,
V. V.
Maslyuk
,
D.
Nürenberg
,
J.
Seibel
,
R.
Gutierrez
,
G.
Cuniberti
,
K.-H.
Ernst
, and
H.
Zacharias
, “
Chirality-dependent electron spin filtering by molecular monolayers of helicenes
,”
J. Phys. Chem. Lett.
9
(
8
),
2025
2030
(
2018
).
27.
S.
Mishra
,
A. K.
Mondal
,
S.
Pal
,
T. K.
Das
,
E. Z. B.
Smolinsky
,
G.
Siligardi
, and
R.
Naaman
, “
Length-dependent electron spin polarization in oligopeptides and DNA
,”
J. Phys. Chem. C
124
(
19
),
10776
10782
(
2020
).
28.
P. V.
Möllers
,
S.
Ulku
,
D.
Jayarathna
,
F.
Tassinari
,
D.
Nürenberg
,
R.
Naaman
,
C.
Achim
, and
H.
Zacharias
, “
Spin-selective electron transmission through self-assembled monolayers of double-stranded peptide nucleic acid
,”
Chirality
33
(
2
),
93
102
(
2021
).
29.
A. K.
Mondal
,
N.
Brown
,
S.
Mishra
,
P.
Makam
,
D.
Wing
,
S.
Gilead
,
Y.
Wiesenfeld
,
G.
Leitus
,
L. J. W.
Shimon
,
R.
Carmieli
,
D.
Ehre
,
G.
Kamieniarz
,
J.
Fransson
,
O.
Hod
,
L.
Kronik
,
E.
Gazit
, and
R.
Naaman
, “
Long-range spin-selective transport in chiral metal–organic crystals with temperature-activated magnetization
,”
ACS Nano
14
(
12
),
16624
16633
(
2020
).
30.
A. C.
Aragonès
,
E.
Medina
,
M.
Ferrer-Huerta
,
N.
Gimeno
,
M.
Teixidó
,
J. L.
Palma
,
N.
Tao
,
J. M.
Ugalde
,
E.
Giralt
,
I.
Díez-Pérez
, and
V.
Mujica
, “
Measuring the spin-polarization power of a single chiral molecule
,”
Small
13
(
2
),
1602519
(
2017
).
31.
W.
Mtangi
,
V.
Kiran
,
C.
Fontanesi
, and
R.
Naaman
, “
Role of the electron spin polarization in water splitting
,”
J. Phys. Chem. Lett.
6
(
24
),
4916
4922
(
2015
).
32.
W.
Mtangi
,
F.
Tassinari
,
K.
Vankayala
,
A.
Vargas Jentzsch
,
B.
Adelizzi
,
A. R. A.
Palmans
,
C.
Fontanesi
,
E. W.
Meijer
, and
R.
Naaman
, “
Control of electrons’ spin eliminates hydrogen peroxide formation during water splitting
,”
J. Am. Chem. Soc.
139
(
7
),
2794
2798
(
2017
).
33.
F.
Tassinari
,
K.
Banerjee-Ghosh
,
F.
Parenti
,
V.
Kiran
,
A.
Mucci
, and
R.
Naaman
, “
Enhanced hydrogen production with chiral conductive polymer-based electrodes
,”
J. Phys. Chem. C
121
(
29
),
15777
15783
(
2017
).
34.
W.
Zhang
,
K.
Banerjee-Ghosh
,
F.
Tassinari
, and
R.
Naaman
, “
Enhanced electrochemical water splitting with chiral molecule-coated Fe3O4 nanoparticles
,”
ACS Energy Lett.
3
(
10
),
2308
2313
(
2018
).
35.
E.
San Sebastian
,
J.
Cepeda
,
U.
Huizi-Rayo
,
A.
Terenzi
,
D.
Finkelstein-Shapiro
,
D.
Padro
,
J. I.
Santos
,
J. M.
Matxain
,
J. M.
Ugalde
, and
V.
Mujica
, “
Enantiospecific response in cross-polarization solid-state nuclear magnetic resonance of optically active metal organic frameworks
,”
J. Am. Chem. Soc.
142
(
42
),
17989
17996
(
2020
).
36.
K. B.
Ghosh
,
W.
Zhang
,
F.
Tassinari
,
Y.
Mastai
,
O.
Lidor-Shalev
,
R.
Naaman
,
P.
Möllers
,
D.
Nürenberg
,
H.
Zacharias
,
J.
Wei
,
E.
Wierzbinski
, and
D. H.
Waldeck
, “
Controlling chemical selectivity in electrocatalysis with chiral CuO-coated electrodes
,”
J. Phys. Chem. C
123
(
5
),
3024
3031
(
2019
).
37.
H.
Alpern
,
E.
Katzir
,
S.
Yochelis
,
N.
Katz
,
Y.
Paltiel
, and
O.
Millo
, “
Unconventional superconductivity induced in Nb films by adsorbed chiral molecules
,”
New J. Phys.
18
(
11
),
113048
(
2016
).
38.
O.
Ben Dor
,
S.
Yochelis
,
A.
Radko
,
K.
Vankayala
,
E.
Capua
,
A.
Capua
,
S.-H.
Yang
,
L. T.
Baczewski
,
S. S. P.
Parkin
,
R.
Naaman
, and
Y.
Paltiel
, “
Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field
,”
Nat. Commun.
8
(
1
),
14567
(
2017
).
39.
A.
Dianat
,
R.
Gutierrez
,
H.
Alpern
,
V.
Mujica
,
A.
Ziv
,
S.
Yochelis
,
O.
Millo
,
Y.
Paltiel
, and
G.
Cuniberti
, “
Role of exchange interactions in the magnetic response and intermolecular recognition of chiral molecules
,”
Nano Lett.
20
,
7077
(
2020
).
40.
M.
Geyer
,
R.
Gutierrez
,
V.
Mujica
,
J. F. R.
Silva
,
A.
Dianat
, and
G.
Cuniberti
, “
The contribution of intermolecular spin interactions to the London dispersion forces between chiral molecules
,”
J. Chem. Phys.
156
(
23
),
234106
(
2022
).
41.
Q.
Zhu
,
Y.
Kapon
,
A. M.
Fleming
,
S.
Mishra
,
K.
Santra
,
F.
Tassinari
,
S. R.
Cohen
,
T. K.
Das
,
Y.
Sang
,
D. K.
Bhowmick
,
C. J.
Burrows
,
Y.
Paltiel
, and
R.
Naaman
, “
The role of electrons’ spin in DNA oxidative damage recognition
,”
Cell Rep. Phys. Sci.
3
(
12
),
101157
(
2022
).
42.
A.
Ziv
,
A.
Saha
,
H.
Alpern
,
N.
Sukenik
,
L. T.
Baczewski
,
S.
Yochelis
,
M.
Reches
, and
Y.
Paltiel
, “
AFM-based spin-exchange microscopy using chiral molecules
,”
Adv. Mater.
31
(
40
),
1904206
(
2019
).
43.
P.
Das
,
T.
Duanias-Assaf
, and
M.
Reches
, “
Insights into the interactions of amino acids and peptides with inorganic materials using single-molecule force spectroscopy
,”
J. Visualized Exp.
121
,
e54975
(
2017
).
44.
Y.
Razvag
,
V.
Gutkin
, and
M.
Reches
, “
Probing the interaction of individual amino acids with inorganic surfaces using atomic force spectroscopy
,”
Langmuir
29
(
32
),
10102
10109
(
2013
).
45.
T. S.
Metzger
,
S.
Mishra
,
B. P.
Bloom
,
N.
Goren
,
A.
Neubauer
,
G.
Shmul
,
J.
Wei
,
S.
Yochelis
,
F.
Tassinari
,
C.
Fontanesi
,
D. H.
Waldeck
,
Y.
Paltiel
, and
R.
Naaman
, “
The electron spin as a chiral reagent
,”
Angew. Chem., Int. Ed.
59
(
4
),
1653
1658
(
2020
).
46.
M.
Ramanadham
,
V. s.
Jakkal
, and
R.
Chidambaram
, “
Carboxyl group hydrogen bonding in x-ray protein structures analysed using neutron studies on amino acids
,”
FEBS Lett.
323
(
3
),
203
206
(
1993
).
47.
A. R.
Barron
,
C.
Smith
, and
C. E.
Hamilton
,
Chemistry of the Main Group Elements
(
Rice University
,
2010
).
48.
K.
Banerjee-Ghosh
,
O.
Ben Dor
,
F.
Tassinari
,
E.
Capua
,
S.
Yochelis
,
A.
Capua
,
S.-H.
Yang
,
S. S. P.
Parkin
,
S.
Sarkar
,
L.
Kronik
,
L. T.
Baczewski
,
R.
Naaman
, and
Y.
Paltiel
, “
Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates
,”
Science
360
(
6395
),
1331
1334
(
2018
).
49.
M. R.
Safari
,
F.
Matthes
,
V.
Caciuc
,
N.
Atodiresei
,
C. M.
Schneider
,
K.-H.
Ernst
, and
D. E.
Bürgler
, “
Enantioselective adsorption on magnetic surfaces
,” arXiv :2211.12976 (
2023
).
50.
H. J.
Eckvahl
,
N. A.
Tcyrulnikov
,
A.
Chiesa
,
J. M.
Bradley
,
R. M.
Young
,
S.
Carretta
,
M. D.
Krzyaniak
, and
M. R.
Wasielewski
, “
Direct observation of chirality-induced spin selectivity in electron donor–acceptor molecules
,”
Science
382
(
6667
),
197
201
(
2023
).
You do not currently have access to this content.