In the past decade, the quantum chemical version of the density matrix renormalization group method has established itself as the method of choice for strongly correlated molecular systems. However, despite its favorable scaling, in practice, it is not suitable for computations of dynamic correlation. Several approaches to include that in post-DMRG methods exist; in our group, we focused on the tailored coupled cluster (TCC) approach. This method works well in many situations; however, in exactly degenerate cases (with two or more determinants of equal weight), it exhibits a bias toward the reference determinant representing the Fermi vacuum. Although sometimes it is possible to use a compensation scheme to avoid this bias for energy differences, it is certainly a drawback. In order to overcome this bias of the TCC method, we have developed a Hilbert-space multireference version of tailored CC, which can treat several determinants on an equal footing. We have implemented and compared the performance of three Hilbert-space multireference coupled cluster (MRCC) variants—the state universal one and the Brillouin–Wigner and Mukherjee’s state specific ones. We have assessed these approaches on the cyclobutadiene and tetramethyleneethane molecules, which are both diradicals with exactly degenerate determinants at a certain geometry. We have also investigated the sensitivity of the results on the orbital rotation of the highest occupied and lowest unoccupied molecular orbital (HOMO–LUMO) pair, as it is well known that Hilbert-space MRCC methods are not invariant to such transformations.

1.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory
(
Cambridge University Press
,
Cambridge
,
2009
).
2.
J.
Čížek
,
J. Chem. Phys.
45
,
4256
(
1966
).
3.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
4.
H.
Lischka
,
D.
Nachtigallova
,
A. J. A.
Aquino
,
P. G.
Szalay
,
F.
Plasser
,
F. B. C.
Machado
, and
M.
Barbatti
,
Chem. Rev.
118
,
7293
(
2018
).
5.
R. J.
Bartlett
and
M.
Musiał
,
Rev. Mod. Phys.
79
,
291
(
2007
).
6.
Recent Progress in Coupled Cluster Methods
, edited by
P.
Čársky
,
J.
Paldus
, and
J.
Pittner
(
Springer
,
Berlin
,
2010
).
7.
D. I.
Lyakh
,
M.
Musiał
,
V. F.
Lotrich
, and
R. J.
Bartlett
,
Chem. Rev.
112
,
182
(
2012
).
8.
F. A.
Evangelista
,
J. Chem. Phys.
149
,
030901
(
2018
).
9.
P. K.
Samanta
,
D.
Mukherjee
,
M.
Hanauer
, and
A.
Kohn
,
J. Chem. Phys.
140
,
134108
(
2014
).
10.
D.
Datta
and
M.
Nooijen
,
J. Chem. Phys.
137
,
204107
(
2012
).
11.
K.
Bhaskaran-Nair
,
O.
Demel
, and
J.
Pittner
,
J. Chem. Phys.
129
,
184105
(
2008
).
12.
O.
Demel
,
K.
Bhaskaran-Nair
, and
J.
Pittner
,
J. Chem. Phys.
133
,
134106
(
2010
).
13.
K.
Bhaskaran-Nair
,
O.
Demel
,
J.
Šmydke
, and
J.
Pittner
,
J. Chem. Phys.
134
,
154106
(
2011
).
14.
S.
Kedžuch
,
O.
Demel
,
J.
Pittner
,
S.
Ten-no
, and
J.
Noga
,
Chem. Phys. Lett.
511
,
418
(
2011
).
15.
O.
Demel
,
S.
Kedžuch
,
M.
Švaňa
,
S.
Ten-no
,
J.
Pittner
, and
J.
Noga
,
Phys. Chem. Chem. Phys.
14
,
4753
(
2012
).
16.
O.
Demel
,
S.
Kedžuch
,
J.
Noga
, and
J.
Pittner
,
Mol. Phys.
111
,
2477
(
2013
).
17.
J.
Brabec
,
S.
Krishnamoorthy
,
H.
van Dam
,
K.
Kowalski
, and
J.
Pittner
,
Chem. Phys. Lett.
514
,
347
(
2011
).
18.
K.
Bhaskaran-Nair
,
J.
Brabec
,
E.
Apra
,
H. J. J.
van Dam
,
J.
Pittner
, and
K.
Kowalski
,
J. Chem. Phys.
137
,
094112
(
2012
).
19.
J.
Brabec
,
K.
Bhaskaran-Nair
,
K.
Kowalski
,
J.
Pittner
, and
H. J. J.
van Dam
,
Chem. Phys. Lett.
542
,
128
(
2012
).
20.
J.
Brabec
,
J.
Pittner
,
H. J. J.
van Dam
,
E.
Aprà
, and
K.
Kowalski
,
J. Chem. Theory Comput.
8
,
487
(
2012
).
21.
J.
Brabec
,
K.
Bhaskaran-Nair
,
N.
Govind
,
J.
Pittner
, and
K.
Kowalski
,
J. Chem. Phys.
137
,
171101
(
2012
).
22.
J.
Brabec
,
H. J. J.
van Dam
,
J.
Pittner
, and
K.
Kowalski
,
J. Chem. Phys.
136
,
124102
(
2012
).
23.
S.
Banik
,
L.
Ravichandran
,
J.
Brabec
,
I.
Hubač
,
K.
Kowalski
, and
J.
Pittner
,
J. Chem. Phys.
142
,
114106
(
2015
).
24.
I.
Hubač
,
J.
Pittner
, and
P.
Čársky
,
J. Chem. Phys.
112
,
8779
(
2000
).
25.
F.
Neese
,
A.
Hansen
, and
D. G.
Liakos
,
J. Chem. Phys.
131
,
064103
(
2009
).
26.
O.
Demel
,
J.
Pittner
, and
F.
Neese
,
J. Chem. Theory Comput.
11
,
3104
(
2015
).
27.
J.
Brabec
,
J.
Lang
,
M.
Saitow
,
J.
Pittner
,
F.
Neese
, and
O.
Demel
,
J. Chem. Theory Comput.
14
,
1370
(
2018
).
28.
J.
Lang
,
J.
Brabec
,
M.
Saitow
,
J.
Pittner
,
F.
Neese
, and
O.
Demel
,
Phys. Chem. Chem. Phys.
21
,
5022
(
2019
).
29.
X.
Li
and
J.
Paldus
,
J. Chem. Phys.
107
,
6257
(
1997
).
30.
X.
Li
and
J.
Paldus
,
J. Mol. Struct.: THEOCHEM
547
,
69
(
2001
).
31.
X.
Li
and
J.
Paldus
,
J. Chem. Phys.
115
,
5759
(
2001
).
32.
X.
Li
and
J.
Paldus
,
J. Chem. Phys.
115
,
5774
(
2001
).
33.
J.
Paldus
and
J.
Planelles
,
Theor. Chim. Acta
89
,
13
(
1994
).
34.
P.
Piecuch
,
R.
Toboła
, and
J.
Paldus
,
Phys. Rev. A
54
,
1210
(
1996
).
35.
X.
Li
,
G.
Peris
,
J.
Planelles
,
F.
Rajadall
, and
J.
Paldus
,
J. Chem. Phys.
107
,
90
(
1997
).
36.
O.
Hino
,
T.
Kinoshita
,
G.
Kin-Lic Chan
, and
R. J.
Bartlett
,
J. Chem. Phys.
124
,
114311
(
2006
).
37.
D. I.
Lyakh
,
V. F.
Lotrich
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
501
,
166
(
2011
).
38.
A.
Melnichuk
and
R. J.
Bartlett
,
J. Chem. Phys.
137
,
214103
(
2012
).
39.
A.
Melnichuk
and
R. J.
Bartlett
,
J. Chem. Phys.
140
,
064113
(
2014
).
40.
L.
Veis
,
A.
Antalik
,
J.
Brabec
,
F.
Neese
,
O.
Legeza
, and
J.
Pittner
,
J. Phys. Chem. Lett.
7
,
4072
(
2016
).
41.
L.
Veis
,
A.
Antalík
,
J.
Brabec
,
F.
Neese
,
Ö.
Legeza
, and
J.
Pittner
,
J. Phys. Chem. Lett.
8
,
291
(
2017
).
42.
L.
Veis
,
A.
Antalík
,
Ö.
Legeza
,
A.
Alavi
, and
J.
Pittner
,
J. Chem. Theory Comput.
14
,
2439
(
2018
).
43.
A.
Antalík
,
L.
Veis
,
J.
Brabec
,
O.
Demel
,
Ö.
Legeza
, and
J.
Pittner
,
J. Chem. Phys.
151
,
084112
(
2019
).
44.
J.
Lang
,
A.
Antalik
,
L.
Veis
,
J.
Brandejs
,
J.
Brabec
,
O.
Legeza
, and
J.
Pittner
,
J. Chem. Theory Comput.
16
,
3028
(
2020
).
45.
J.
Brandejs
,
J.
Višňák
,
L.
Veis
,
M.
Máté
,
Ö.
Legeza
, and
J.
Pittner
,
J. Chem. Phys.
152
,
174107
(
2020
).
46.
K.
Kowalski
and
P.
Piecuch
,
J. Chem. Phys.
113
,
18
(
2000
).
47.
N. P.
Bauman
,
J.
Shen
, and
P.
Piecuch
,
Mol. Phys.
115
,
2860
(
2017
).
48.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
131
,
054106
(
2009
).
49.
D.
Cleland
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
132
,
041103
(
2010
).
50.
F. R.
Petruzielo
,
A. A.
Holmes
,
H. J.
Changlani
,
M. P.
Nightingale
, and
C. J.
Umrigar
,
Phys. Rev. Lett.
109
,
230201
(
2012
).
51.
C.
Overy
,
G.
Booth
,
N. S.
Blunt
,
J.
Shepherd
,
D.
Cleland
, and
A.
Alavi
,
J. Chem. Phys.
141
,
244117
(
2015
).
52.
J. E.
Deustua
,
J.
Shen
, and
P.
Piecuch
,
Phys. Rev. Lett.
119
,
223003
(
2017
).
53.
J. E.
Deustua
,
I.
Magoulas
,
J.
Shen
, and
P.
Piecuch
,
J. Chem. Phys.
149
,
151101
(
2018
).
54.
J. E.
Deustua
,
J.
Shen
, and
P.
Piecuch
,
J. Chem. Phys.
154
,
124103
(
2021
).
55.
J. E.
Deustua
,
S. H.
Yuwono
,
J.
Shen
, and
P.
Piecuch
,
J. Chem. Phys.
150
,
111101
(
2019
).
56.
K.
Gururangan
and
P.
Piecuch
,
J. Chem. Phys.
159
,
084108
(
2023
); arXiv:2306.09638.
57.
S. R.
White
and
R. M.
Noack
,
Phys. Rev. Lett.
68
,
3487
(
1992
).
60.
S. R.
White
and
R. L.
Martin
,
J. Chem. Phys.
110
,
4127
(
1999
).
61.
A.
Baiardi
and
M.
Reiher
,
J. Chem. Phys.
152
,
040903
(
2020
).
62.
Y.
Cheng
,
Z.
Xie
, and
H.
Ma
,
J. Phys. Chem. Lett.
13
,
904
(
2022
).
63.
Y.
Xu
,
Y.
Cheng
,
Y.
Song
, and
H.
Ma
,
J. Chem. Theory Comput.
19
,
4781
4795
(
2023
).
64.
Y.
Kurashige
and
T.
Yanai
,
J. Chem. Phys.
135
,
094104
(
2011
).
65.
S.
Sharma
and
G.
Chan
,
J. Chem. Phys.
141
,
111101
(
2014
).
66.
L.
Freitag
,
S.
Knecht
,
C.
Angeli
, and
M.
Reiher
,
J. Chem. Theory Comput.
13
,
451
(
2017
).
67.
S.
Sharma
,
G.
Knizia
,
S.
Guo
, and
A.
Alavi
,
J. Chem. Theory Comput.
13
,
488
(
2017
).
68.
A. Y.
Sokolov
,
S.
Guo
,
E.
Ronca
, and
G. K.-L.
Chan
,
J. Chem. Phys.
146
,
244102
(
2017
).
69.
M.
Saitow
,
Y.
Kurashige
, and
T.
Yanai
,
J. Chem. Phys.
139
,
044118
(
2013
).
70.
S.
Wouters
,
N.
Nakatani
,
D.
Van Neck
, and
G. K.-L.
Chan
,
Phys. Rev. B
88
,
075122
(
2013
).
71.
T.
Yanai
and
G. K.-L.
Chan
,
J. Chem. Phys.
124
,
194106
(
2006
).
72.
T.
Yanai
and
G. K.-L.
Chan
,
J. Chem. Phys.
127
,
104107
(
2007
).
73.
E.
Neuscamman
,
T.
Yanai
, and
G. K.-L.
Chan
,
J. Chem. Phys.
132
,
024106
(
2010
).
74.
E.
Neuscamman
,
T.
Yanai
, and
G. K.-L.
Chan
,
Int. Rev. Phys. Chem.
29
,
231
(
2010
).
75.
P.
Beran
,
M.
Matoušek
,
M.
Hapka
,
K.
Pernal
, and
L.
Veis
,
J. Chem. Theory Comput.
17
,
7575
(
2021
).
76.
D.
Drwal
,
P.
Beran
,
M.
Hapka
,
M.
Modrzejewski
,
A.
Sokół
,
L.
Veis
, and
K.
Pernal
,
J. Phys. Chem. Lett.
13
,
4570
(
2022
).
77.
M.
Matousek
,
M.
Hapka
,
L.
Veis
, and
K.
Pernal
,
J. Chem. Phys.
158
,
054105
(
2023
).
78.
G.
Barcza
,
M. A.
Werner
,
G.
Zarand
,
A.
Pershin
,
Z.
Benedek
,
O.
Legeza
, and
T.
Szilvasi
,
J. Phys. Chem. A
126
,
9709
(
2022
).
79.
G.
Friesecke
,
G.
Barcza
, and
O.
Legeza
, arXiv:2209.14190 (
2023
).
80.
H. R.
Larsson
,
H.
Zhai
,
K.
Gunst
, and
G. K.-L.
Chan
,
J. Chem. Theory Comput.
18
,
749
(
2022
).
81.
M.
Morchen
,
L.
Freitag
, and
M.
Reiher
,
J. Chem. Phys.
153
,
244113
(
2020
).
82.
A.
Leszczyk
,
M.
Mate
,
O.
Legeza
, and
K.
Boguslawski
,
J. Chem. Theory Comput.
18
,
96
(
2022
).
83.
U.
Schollwöck
,
Rev. Mod. Phys.
77
,
259
(
2005
).
85.
O.
Legeza
,
R.
Noack
,
J.
Sólyom
, and
L.
Tincani
, in
Computational Many-Particle Physics
,
Lecture Notes in Physics Vol. 739
, edited by
H.
Fehske
,
R.
Schneider
, and
A.
Weisse
(
Springer
,
Berlin, Heidelberg
,
2008
), pp.
653
664
.
86.
K. H.
Marti
and
M.
Reiher
,
Z. Phys. Chem.
224
,
583
(
2010
).
87.
G. K.-L.
Chan
and
S.
Sharma
,
Annu. Rev. Phys. Chem.
62
,
465
(
2011
).
88.
S.
Wouters
and
D.
Van Neck
,
Eur. Phys. J. D
68
,
272
(
2014
).
89.
S.
Szalay
,
M.
Pfeffer
,
V.
Murg
,
G.
Barcza
,
F.
Verstraete
,
R.
Schneider
, and
O.
Legeza
,
Int. J. Quantum Chem.
115
,
1342
(
2015
).
90.
T.
Yanai
,
Y.
Kurashige
,
W.
Mizukami
,
J.
Chalupský
,
T. N.
Lan
, and
M.
Saitow
,
Int. J. Quantum Chem.
115
,
283
(
2015
).
91.
S.
Östlund
and
S.
Rommer
,
Phys. Rev. Lett.
75
,
3537
(
1995
).
92.
G.
Moritz
and
M.
Reiher
,
J. Chem. Phys.
126
,
244109
(
2007
).
93.
K.
Boguslawski
,
K. H.
Marti
, and
M.
Reiher
,
J. Chem. Phys.
134
,
224101
(
2011
).
94.
T.
Kinoshita
,
O.
Hino
, and
R. J.
Bartlett
,
J. Chem. Phys.
123
,
074106
(
2005
).
95.
P.
Piecuch
,
N.
Oliphant
, and
L.
Adamowicz
,
J. Chem. Phys.
99
,
1875
(
1993
).
96.
P.
Piecuch
and
L.
Adamowicz
,
J. Chem. Phys.
100
,
5792
(
1994
).
97.
B.
Jeziorski
and
H. J.
Monkhorst
,
Phys. Rev. A
24
,
1668
(
1981
).
98.
S. A.
Kucharski
and
R. J.
Bartlett
,
J. Chem. Phys.
95
,
8227
(
1991
).
99.
I.
Hubač
, in
New Methods in Quantum Theory
,
NATO ASI Series 3: High Technology Vol. 8
, edited by
A.
Tsipis
,
V. S.
Popov
,
D. R.
Herschbach
, and
J. S.
Avery
(
Kluwer
,
Dordrecht
,
1996
), pp.
183
202
100.
I.
Hubač
and
P.
Neogrády
,
Phys. Rev. A
50
,
4558
(
1994
).
101.
J.
Mášik
and
I.
Hubač
,
Collect. Czech. Chem. Commun.
62
,
829
(
1997
).
102.
J.
Mášik
and
I.
Hubač
,
Adv. Quantum Chem.
31
,
75
(
1998
).
103.
J.
Mášik
and
I.
Hubač
,
Quantum Systems in Chemistry and Physics: Trends in Methods and Applications
, edited by
R.
McWeeny
,
J.
Maruani
,
Y. G.
Smeyers
, and
S.
Wilson
(
Kluwer Academic Publishers
,
Dordrecht
,
1997
), pp.
283
308
.
104.
J.
Pittner
,
P.
Nachtigall
,
P.
Čársky
,
J.
Mášik
, and
I.
Hubač
,
J. Chem. Phys.
110
,
10275
(
1999
).
105.
J.
Pittner
,
J. Chem. Phys.
118
,
10876
(
2003
).
106.
U. S.
Mahapatra
,
B.
Datta
, and
D.
Mukherjee
,
J. Chem. Phys.
110
,
6171
(
1999
).
107.
U. S.
Mahapatra
and
S.
Chattopadhyay
,
J. Chem. Phys.
133
,
074102
(
2010
).
108.
U. S.
Mahapatra
and
S.
Chattopadhyay
,
J. Chem. Phys.
134
,
044113
(
2011
).
109.
L.
Kong
,
Int. J. Quantum Chem.
109
,
441
(
2009
).
110.
J.
Paldus
and
X.
Li
,
J. Chem. Phys.
118
,
6769
(
2003
).
111.
B. R.
Arnold
and
J.
Michl
, “
Spectroscopy of cyclobutadiene
,” in
Kinetics and Spectroscopy of Carbenes and Biradicals
, edited by
M.
Platz
(
Plenum Press
,
New York
,
1990
), Chap. 1, pp.
1
32
.
112.
B. R.
Arnold
,
J. G.
Radziszewski
,
A.
Campion
,
S. S.
Perry
, and
J.
Michl
,
J. Am. Chem. Soc.
113
,
692
(
1991
).
113.
B. R.
Arnold
and
J.
Michl
,
J. Phys. Chem.
97
,
13348
(
1993
).
114.
W. T.
Borden
,
E. R.
Davidson
, and
D.
Feller
,
J. Am. Chem. Soc.
103
,
5725
(
1981
).
115.
P. G.
Szalay
,
T.
Müller
,
G.
Gidofalvi
,
H.
Lischka
, and
R.
Shepard
,
Chem. Rev.
112
,
108
(
2011
).
116.
A.
Balková
and
R. J.
Bartlett
,
J. Chem. Phys.
101
,
8972
(
1994
).
117.
J. C.
Sancho-García
,
J.
Pittner
,
P.
Čársky
, and
I.
Hubač
,
J. Chem. Phys.
112
,
8785
(
2000
).
118.
X.
Li
and
J.
Paldus
,
J. Chem. Phys.
131
,
114103
(
2009
).
119.
E.
Monino
,
M.
Boggio-Pasqua
,
A.
Scemama
,
D.
Jacquemin
, and
P.-F.
Loos
,
J. Phys. Chem. A
126
,
4664
(
2022
).
120.
D. W.
Whitman
and
B. K.
Carpenter
,
J. Am. Chem. Soc.
104
,
6473
(
1982
).
121.
M.
Eckert-Maksić
,
M.
Vazdar
,
M.
Barbatti
,
H.
Lischka
, and
Z. B.
Maksić
,
J. Chem. Phys.
125
,
064310
(
2006
).
122.
molpro is a package of ab initio programs written by
H.-J.
Werner
and
P. J.
Knowles
, with contributions from
J.
Almlöf
,
R. D.
Amos
,
A.
Berning
,
D. L.
Cooper
,
M. J. O.
Deegan
,
A. J.
Dobbyn
,
F.
Eckert
,
S. T.
Elbert
,
C.
Hampel
,
R.
Lindh
,
A. W.
Lloyd
,
W.
Meyer
,
A.
Nicklass
,
K.
Peterson
,
R.
Pitzer
,
A. J.
Stone
,
P. R.
Taylor
,
M. E.
Mura
,
P.
Pulay
,
M.
Schütz
,
H.
Stoll
, and
T.
Thorsteinsson
.
123.
Ö.
Legeza
,
L.
Veis
, and
T.
Mosoni
, “
QC-DMRG-Budapest, a program for quantum chemical DMRG calculations
,” available from O. Legeza upon reasonable request.
124.
F.
Neese
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
73
(
2012
).
125.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
126.
P.
Dowd
,
J. Am. Chem. Soc.
92
,
1066
(
1970
).
127.
J.
Pittner
,
P.
Nachtigall
,
P.
Čársky
, and
I.
Hubač
,
J. Phys. Chem. A
105
,
1354
(
2001
).
128.
K.
Bhaskaran-Nair
,
O.
Demel
, and
J.
Pittner
,
J. Chem. Phys.
132
,
154105
(
2010
).
129.
S.
Chattopadhyay
,
R. K.
Chaudhuri
, and
U.
Sinha Mahapatra
,
ChemPhysChem
12
,
2791
(
2011
).
130.
Z. D.
Pozun
,
X.
Su
, and
K. D.
Jordan
,
J. Am. Chem. Soc.
135
,
13862
(
2013
).
131.
E.
Pastorczak
,
M.
Hapka
,
L.
Veis
, and
K.
Pernal
,
J. Phys. Chem. Lett.
10
,
4668
(
2019
).
132.
O.
Legeza
and
J.
Solyom
,
Phys. Rev. B
68
,
195116
(
2003
).
133.
Ö.
Legeza
,
J.
Röder
, and
B.
Hess
,
Phys. Rev. B
67
,
125114
(
2003
).
134.
Ö.
Legeza
and
J.
Sólyom
,
Phys. Rev. B
70
,
205118
(
2004
).
135.
E. P.
Clifford
,
P. G.
Wenthold
,
W. C.
Lineberger
,
G. B.
Ellison
,
C. X.
Wang
,
J. J.
Grabowski
,
F.
Vila
, and
K. D.
Jordan
,
J. Chem. Soc., Perkin Trans. 2
1998
,
1015
.
You do not currently have access to this content.