In this paper, we explore the molecular basis of combining photodynamic therapy (PDT), a light-triggered targeted anticancer therapy, with the traditional chemotherapeutic properties of the well-known cytotoxic agent gemcitabine. A photosensitizer prerequisite is significant absorption of biocompatible light in the visible/near IR range, ideally between 600 and 1000 nm. We use highly accurate multiconfigurational CASSCF/MS-CASPT2/MM and TD-DFT methodologies to determine the absorption properties of a series of gemcitabine derivatives with the goal of red-shifting the UV absorption band toward the visible region and facilitating triplet state population. The choice of the substitutions and, thus, the rational design is based on important biochemical criteria and on derivatives whose synthesis is reported in the literature. The modifications tackled in this paper consist of: (i) substitution of the oxygen atom at O2 position with heavier atoms (O → S and O → Se) to red shift the absorption band and increase the spin–orbit coupling, (ii) addition of a lipophilic chain at the N7 position to enhance transport into cancer cells and slow down gemcitabine metabolism, and (iii) attachment of aromatic systems at C5 position to enhance red shift further. Results indicate that the combination of these three chemical modifications markedly shifts the absorption spectrum toward the 500 nm region and beyond and drastically increases spin–orbit coupling values, two key PDT requirements. The obtained theoretical predictions encourage biological studies to further develop this anticancer approach.

1.
P.
Singh
,
M.
Yam
,
P. J.
Russell
, and
A.
Khatri
, “
Molecular and traditional chemotherapy: A united front against prostate cancer
,”
Cancer Lett.
293
(
1
),
1
14
(
2010
).
2.
V. T.
DeVita
, Jr.
and
E.
Chu
, “
A history of cancer chemotherapy
,”
Cancer Res.
68
(
21
),
8643
8653
(
2008
).
3.
Z. H.
Siddik
, “
Cisplatin: Mode of cytotoxic action and molecular basis of resistance
,”
Oncogene
22
(
47
),
7265
7279
(
2003
).
4.
E.
De Clercq
, “
Antivirals: Past, present and future
,”
Biochem. Pharmacol.
85
(
6
),
727
744
(
2013
).
5.
Q.
Zeng
,
H.
Zhang
,
P.
Kuang
,
J.
Li
,
X.
Chen
,
T.
Dong
,
Q.
Wu
,
C.
Zhang
,
C.
Chen
,
T.
Niu
,
T.
Liu
,
Z.
Liu
, and
J.
Ji
, “
A novel conditioning regimen of chidamide, cladribine, gemcitabine, and busulfan in the autologous stem cell transplantation of aggressive T-cell lymphoma
,”
Front Oncol.
13
,
1143556
(
2023
).
6.
C. M.
Galmarini
,
J. R.
Mackey
, and
C.
Dumontet
, “
Nucleoside analogues and nucleobases in cancer treatment
,”
Lancet Oncol.
3
(
7
),
415
424
(
2002
).
7.
V.
Schirrmacher
, “
From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (review)
,”
Int. J. Oncol.
54
(
2
),
407
419
(
2019
).
8.
S.
Monro
,
K. L.
Colón
,
H.
Yin
,
J. I. I. I.
Roque
,
P.
Konda
,
S.
Gujar
,
R. P.
Thummel
,
L.
Lilge
,
C. G.
Cameron
, and
S. A.
McFarland
, “
Transition metal complexes and photodynamic therapy from a tumor-centered approach: Challenges, opportunities, and highlights from the development of TLD1433
,”
Chem. Rev.
119
(
2
),
797
828
(
2019
).
9.
R.
Improta
and
T.
Douki
,
DNA Photodamage: From Light Absorption to Cellular Responses and Skin Cancer
(
The Royal Society of Chemistry
,
2021
).
10.
T.
Yano
and
K. K.
Wang
, “
Photodynamic therapy for gastrointestinal cancer
,”
Photochem. Photobiol.
96
(
3
),
517
523
(
2020
).
11.
S.
Zeng
,
M.
Pöttler
,
B.
Lan
,
R.
Grützmann
,
C.
Pilarsky
, and
H.
Yang
, “
Chemoresistance in pancreatic cancer
,”
Int. J. Mol. Sci.
20
(
18
),
4504
(
2019
).
12.
L.
Toschi
,
G.
Finocchiaro
,
S.
Bartolini
,
V.
Gioia
, and
F.
Cappuzzo
, “
Role of gemcitabine in cancer therapy
,”
Future Oncol.
1
(
1
),
7
17
(
2005
).
13.
E.
Mini
,
S.
Nobili
,
B.
Caciagli
,
I.
Landini
, and
T.
Mazzei
, “
Cellular pharmacology of gemcitabine
,”
Ann. Oncol.
17
(
suppl 5
),
v7
(
2006
).
14.
E.
Artin
,
J.
Wang
,
G. J. S.
Lohman
,
K.
Yokoyama
,
G.
Yu
,
R. G.
Griffin
,
G.
Bar
, and
J. A.
Stubbe
, “
Insight into the mechanism of inactivation of ribonucleotide reductase by gemcitabine 5′-diphosphate in the presence or absence of reductant
,”
Biochemistry
48
(
49
),
11622
11629
(
2009
).
15.
E.
Moysan
,
G.
Bastiat
, and
J. P.
Benoit
, “
Gemcitabine versus modified gemcitabine: A review of several promising chemical modifications
,”
Mol. Pharm.
10
(
2
),
430
444
(
2013
).
16.
P.
Couvreur
,
L. H.
Reddy
,
S.
Mangenot
,
J. H.
Poupaert
,
D.
Desmaële
,
S.
Lepêtre-Mouelhi
,
B.
Pili
,
C.
Bourgaux
,
H.
Amenitsch
, and
M.
Ollivon
, “
Discovery of new hexagonal supramolecular nanostructures formed by squalenoylation of an anticancer nucleoside analogue
,”
Small
4
(
2
),
247
253
(
2008
).
17.
L. H.
Reddy
,
C.
Dubernet
,
S. L.
Mouelhi
,
P. E.
Marque
,
D.
Desmaele
, and
P.
Couvreur
, “
A new nanomedicine of gemcitabine displays enhanced anticancer activity in sensitive and resistant leukemia types
,”
J. Controlled Release
124
(
1-2
),
20
27
(
2007
).
18.
L.
Martínez-Fernández
and
A.
Francés-Monerris
, in
Theoretical and Computational Photochemistry
, edited by
C.
García-Iriepa
and
M.
Marazzi
(
Elsevier
,
2023
), pp.
311
336
.
19.
R.
Improta
,
F.
Santoro
, and
L.
Blancafort
, “
Quantum mechanical studies on the photophysics and the photochemistry of nucleic acids and nucleobases
,”
Chem. Rev.
116
(
6
),
3540
3593
(
2016
).
20.
A.
Francés-Monerris
,
H.
Gattuso
,
D.
Roca-Sanjuán
,
I.
Tuñón
,
M.
Marazzi
,
E.
Dumont
, and
A.
Monari
, “
Dynamics of the excited-state hydrogen transfer in a (dG)·(dC) homopolymer: Intrinsic photostability of DNA
,”
Chem. Sci.
9
(
41
),
7902
7911
(
2018
).
21.
A. A.
Beckstead
,
Y.
Zhang
,
M. S.
de Vries
, and
B.
Kohler
, “
Life in the light: Nucleic acid photoproperties as a legacy of chemical evolution
,”
Phys. Chem. Chem. Phys.
18
(
35
),
24228
24238
(
2016
).
22.
M.
Merchán
,
R.
González-Luque
,
T.
Climent
,
L.
Serrano-Andrés
,
E.
Rodríguez
,
M.
Reguero
, and
D.
Peláez
, “
Unified model for the ultrafast decay of pyrimidine nucleobases
,”
J. Phys. Chem. B
110
(
51
),
26471
26476
(
2006
).
23.
L.
Martínez Fernández
,
F.
Santoro
, and
R.
Improta
, “
Nucleic acids as a playground for the computational study of the photophysics and photochemistry of multichromophore assemblies
,”
Acc. Chem. Res.
55
(
15
),
2077
2087
(
2022
).
24.
J. T.
Reardon
and
A.
Sancar
, “
Nucleotide excision repair
,”
PProg. Nucleic Acid Res. Mol. Biol.
79
,
183
235
(
2005
).
25.
C. E.
Crespo-Hernández
,
B.
Cohen
,
P. M.
Hare
, and
B.
Kohler
, “
Ultrafast excited-state dynamics in nucleic acids
,”
Chem. Rev.
104
(
4
),
1977
2020
(
2004
).
26.
K.
Zhang
,
F.
Wang
,
Y.
Jiang
,
X.
Wang
,
H.
Pan
,
Z.
Sun
,
H.
Sun
,
J.
Xu
, and
J.
Chen
, “
New insights about the photostability of DNA/RNA bases: Triplet nπ* state leads to effective intersystem crossing in pyrimidinones
,”
J. Phys. Chem. B
125
(
8
),
2042
2049
(
2021
).
27.
S.
Zhou
,
H.
Tian
,
J.
Yan
,
Z.
Zhang
,
G.
Wang
,
X.
Yu
,
W.
Sang
,
B.
Li
,
G. S. P.
Mok
,
J.
Song
, and
Y.
Dai
, “
IR780/Gemcitabine-conjugated metal-phenolic network enhanced photodynamic cancer therapy
,”
Chin. Chem. Lett.
35
,
108312
(
2023
).
28.
R. R.
Allison
and
K.
Moghissi
, “
Photodynamic therapy (PDT): PDT mechanisms
,”
Clin. Endosc.
46
(
1
),
24
(
2013
).
29.
K.
Andersson
,
P.
Malmqvist
, and
B. O.
Roos
, “
Second-order perturbation theory with a complete active space self-consistent field reference function
,”
J. Chem. Phys.
96
(
2
),
1218
1226
(
1992
).
30.
D.
Roca-Sanjuán
,
F.
Aquilante
, and
R.
Lindh
, “
Multiconfiguration second-order perturbation theory approach to strong electron correlation in chemistry and photochemistry
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
(
4
),
585
603
(
2012
).
31.
H.
Lischka
,
D.
Nachtigallová
,
A. J. A.
Aquino
,
P. G.
Szalay
,
F.
Plasser
,
F. B. C.
Machado
, and
M.
Barbatti
, “
Multireference approaches for excited states of molecules
,”
Chem. Rev.
118
(
15
),
7293
7361
(
2018
).
32.
J.
Finley
,
A.
Malmqvist
,
B. O.
Roos
,
L.
Serrano-Andrés
, and
A.
Andres
, “
The multi-state CASPT2 method
,”
Chem. Phys. Lett.
288
(
2-4
),
299
306
(
1998
).
33.
A. M. A.
Abdelgawwad
,
A.
Monari
,
I.
Tuñón
, and
A.
Francés-Monerris
, “
Spatial and temporal resolution of the oxygen-independent photoinduced DNA interstrand cross-linking by a nitroimidazole derivative
,”
J. Chem. Inf. Model.
62
(
13
),
3239
3252
(
2022
).
34.
L.-Y.
Peng
,
Z.-W.
Li
,
Q.
Fang
,
B.-B.
Xie
,
S.-H.
Xia
, and
G.
Cui
, “
Combined QM (MS-CASPT2)/MM studies on photocyclization and photoisomerization of a fulgide derivative in toluene solution
,”
Phys. Chem. Chem. Phys.
24
(
48
),
29918
29926
(
2022
).
35.
A.
Frances-Monerris
,
J.
Segarra-Marti
,
M.
Merchan
, and
D.
Roca-Sanjuan
, “
Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0–3 eV)
,”
J. Chem. Phys.
143
(
21
),
215101
(
2015
).
36.
A.
Francés-Monerris
,
M.
Merchán
, and
D.
Roca-Sanjuán
, “
Communication: Electronic UV-Vis transient spectra of the ·OH reaction products of uracil, thymine, cytosine, and 5,6-dihydrouracil by using the complete active space self-consistent field second-order perturbation (CASPT2//CASSCF) theory
,”
J. Chem. Phys.
139
(
7
),
071101
(
2013
).
37.
S.
Mai
,
B.
Ashwood
,
P.
Marquetand
,
C. E.
Crespo-Hernández
, and
L.
González
, “
Solvatochromic effects on the absorption spectrum of 2-thiocytosine
,”
J. Phys. Chem. B
121
(
20
),
5187
5196
(
2017
).
38.
A.
Francés-Monerris
,
C.
Hognon
,
M. A.
Miranda
,
V.
Lhiaubet-Vallet
, and
A.
Monari
, “
Triplet photosensitization mechanism of thymine by an oxidized nucleobase: From a dimeric model to DNA environment
,”
Phys. Chem. Chem. Phys.
20
(
40
),
25666
25675
(
2018
).
39.
L.
Serrano-Andrés
and
M.
Merchán
, “
Are the five natural DNA/RNA base monomers a good choice from natural selection? A photochemical perspective
,”
J. Photochem. Photobiol. C: Photochem. Rev.
10
(
1
),
21
32
(
2009
).
40.
D.
Roca-Sanjuán
,
G.
Olaso-González
,
M.
Rubio
,
P. B.
Coto
,
M.
Merchán
,
N.
Ferré
,
V.
Ludwig
, and
L.
Serrano-Andrés
,
Pure Appl. Chem.
81
,
743
754
(
2009
).
41.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
, “
Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions
,”
J. Chem. Phys.
72
(
1
),
650
654
(
1980
).
42.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. a.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. a.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
a. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
a. F.
Izmaylov
,
J. L.
Sonnenberg
,
Williams
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. a.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. a.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
a. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, “
G16_C01
,” Gaussian 16, Revision,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
43.
C.
Butchosa
,
S.
Simon
, and
A. A.
Voityuk
, “
Electron transfer from aromatic amino acids to guanine and adenine radical cations in π stacked and T-shaped complexes
,”
Org. Biomol. Chem.
8
(
8
),
1870
1875
(
2010
).
44.
S.
Bai
and
M.
Barbatti
, “
On the decay of the triplet state of thionucleobases
,”
Phys. Chem. Chem. Phys.
19
(
20
),
12674
12682
(
2017
).
45.
S.
Eynollahi
,
S.
Riahi
,
M. R.
Ganjali
, and
P.
Norouzi
, “
Density functional theory studies on the geometry and electronic properties of Mitomycin C, DNA Base Pairs and their complex
,”
Int. J. Electrochem. Sci.
5
(
9
),
1367
1378
(
2010
).
46.
P.-Å.
Malmqvist
and
B. O.
Roos
, “
The CASSCF state interaction method
,”
Chem. Phys. Lett.
155
(
2
),
189
194
(
1989
).
47.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Sigbahn
, “
A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach
,”
Chem. Phys.
48
(
2
),
157
173
(
1980
).
48.
B. O.
Roos
,
V.
Veryazov
, and
P.-O.
Widmark
, “
Relativistic atomic natural orbital type basis sets for the alkaline and alkaline-earth atoms applied to the ground-state potentials for the corresponding dimers
,”
Theor. Chem. Acc.
111
(
2-6
),
345
351
(
2004
).
49.
P.
Kimber
and
F.
Plasser
, “
Toward an understanding of electronic excitation energies beyond the molecular orbital picture
,”
Phys. Chem. Chem. Phys.
22
(
11
),
6058
6080
(
2020
).
50.
G.
Ghigo
,
B. O.
Roos
, and
P.-Å.
Malmqvist
, “
A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2)
,”
Chem. Phys. Lett.
396
(
1–3
),
142
149
(
2004
).
51.
Q.
Peng
,
Y. H.
Zhu
,
T. S.
Zhang
,
X. Y.
Liu
,
W. H.
Fang
, and
G.
Cui
, “
Selenium substitution effects on excited-state properties and photophysics of uracil: A MS-CASPT2 study
,”
Phys. Chem. Chem. Phys.
22
(
21
),
12120
12128
(
2020
).
52.
B. O.
Roos
,
R.
Lindh
,
P.-Å.
Malmqvist
,
V.
Veryazov
, and
P.-O.
Widmark
, “
New relativistic ANO basis sets for transition metal atoms
,”
J. Phys. Chem. A
109
(
29
),
6575
6579
(
2005
).
53.
A. M. A.
Abdelgawwad
,
J. A. M.
Xavier
,
D.
Roca-Sanjuán
,
C.
Viñas
,
F.
Teixidor
, and
A.
Francés-Monerris
, “
Light-induced on/off switching of the surfactant character of the o-cobaltabis (dicarbollide) anion with No covalent bond alteration
,”
Angew. Chem., Int. Ed.
60
(
49
),
25753
25757
(
2021
).
54.
P. Å.
Malmqvist
,
B. O.
Roos
, and
B.
Schimmelpfennig
, “
The restricted active space (RAS) state interaction approach with spin–orbit coupling
,”
Chem. Phys. Lett.
357
(
3-4
),
230
240
(
2002
).
55.
I.
Fdez Galván
,
M.
Vacher
,
A.
Alavi
,
C.
Angeli
,
F.
Aquilante
,
J.
Autschbach
,
J. J.
Bao
,
S. I.
Bokarev
,
N. A.
Bogdanov
,
R. K.
Carlson
,
L. F.
Chibotaru
,
J.
Creutzberg
,
N.
Dattani
,
M. G.
Delcey
,
S. S.
Dong
,
A.
Dreuw
,
L.
Freitag
,
L. M.
Frutos
,
L.
Gagliardi
,
F.
Gendron
,
A.
Giussani
,
L.
Gonzalez
,
G.
Grell
,
M.
Guo
,
C. E.
Hoyer
,
M.
Johansson
,
S.
Keller
,
S.
Knecht
,
G.
Kovačević
,
E.
Källman
,
G.
Li Manni
,
M.
Lundberg
,
Y.
Ma
,
S.
Mai
,
J. P.
Malhado
,
P. A.
Malmqvist
,
P.
Marquetand
,
S. A.
Mewes
,
J.
Norell
,
M.
Olivucci
,
M.
Oppel
,
Q. M.
Phung
,
K.
Pierloot
,
F.
Plasser
,
M.
Reiher
,
A. M.
Sand
,
I.
Schapiro
,
P.
Sharma
,
C. J.
Stein
,
L. K.
Sørensen
,
D. G.
Truhlar
,
M.
Ugandi
,
L.
Ungur
,
A.
Valentini
,
S.
Vancoillie
,
V.
Veryazov
,
O.
Weser
,
T. A.
Wesołowski
,
P.-O.
Widmark
,
S.
Wouters
,
A.
Zech
,
J. P.
Zobel
, and
R.
Lindh
, “
OpenMolcas: From source code to insight
,”
J. Chem. Theory Comput.
15
(
11
),
5925
5964
(
2019
).
56.
D. A.
Case
,
H. M.
Aktulga
,
K.
Belfon
,
I. Y.
Ben-Shalom
,
S. R.
Brozell
,
D. S.
Cerutti
,
T. E.
Cheatham
III
,
G. A.
Cisneros
,
V. W. D.
Cruzeiro
,
T. A.
Darden
,
R. E.
Duke
,
G.
Giambasu
,
M. K.
Gilson
,
H.
Gohlke
,
A. W.
Goetz
,
R.
Harris
,
S.
Izadi
,
S. A.
Izmailov
,
C.
Jin
,
K.
Kasavajhala
,
M. C.
Kaymak
,
E.
King
,
A.
Kovalenko
,
T.
Kurtzman
,
T. S.
Lee
,
S.
LeGrand
,
P.
Li
,
C.
Lin
,
J.
Liu
,
T.
Luchko
,
R.
Luo
,
M.
Machado
,
V.
Man
,
M.
Manathunga
,
K. M.
Merz
,
Y.
Miao
,
O.
Mikhailovskii
,
G.
Monard
,
H.
Nguyen
,
K. A.
O’Hearn
,
A.
Onufriev
,
F.
Pan
,
S.
Pantano
,
R.
Qi
,
A.
Rahnamoun
,
D. R.
Roe
,
A.
Roitberg
,
C.
Sagui
,
S.
Schott-Verdugo
,
J.
Shen
,
C. L.
Simmerling
,
N. R.
Skrynnikov
,
J.
Smith
,
J.
Swails
,
R. C.
Walker
,
J.
Wang
,
H.
Wei
,
R. M.
Wolf
,
X.
Wu
,
Y.
Xue
,
D. M.
York
,
S.
Zhao
, and
P. A.
Kollman
, Amber 20,
Amber 20
,
San Francisco
,
2021
.
57.
A.
Pérez
,
I.
Marchán
,
D.
Svozil
,
J.
Sponer
,
T. E.
Cheatham
,
C. A.
Laughton
, and
M.
Orozco
, “
Refinement of the AMBER force field for nucleic acids: Improving the description of α/γ conformers
,”
Biophys. J.
92
(
11
),
3817
3829
(
2007
).
58.
W. D.
Comell
,
P.
Cieplak
,
C. I.
Bayly
, and
P. A.
Kollman
, “
Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation
,”
J. Am. Chem. Soc.
115
(
21
),
9620
9631
(
1993
).
59.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
(
2
),
926
935
(
1983
).
60.
S.
Sitkiewicz
,
J.
Carmona-García
,
L.
Cerdán
, and
D.
Roca-Sanjuán
, “
MULTISPEC
,” https://github.com/qcexval/multispec; accessed October 20, 2023.
61.
F.
Neese
,
F.
Wennmohs
,
U.
Becker
, and
C.
Riplinger
, “
The ORCA quantum chemistry program package
,”
J. Chem. Phys.
152
(
22
),
224108
(
2020
).
62.
M.
Barbatti
,
M.
Ruckenbauer
,
F.
Plasser
,
J.
Pittner
,
G.
Granucci
,
M.
Persico
, and
H.
Lischka
, “
Newton-X: A surface-hopping program for nonadiabatic molecular dynamics
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
(
1
),
26
33
(
2014
).
63.
M.
Barbatti
,
M.
Bondanza
,
R.
Crespo-Otero
,
B.
Demoulin
,
P. O.
Dral
,
G.
Granucci
,
F.
Kossoski
,
H.
Lischka
,
B.
Mennucci
,
S.
Mukherjee
,
M.
Pederzoli
,
M.
Persico
,
M.
Pinheiro
, Jr.
,
J.
Pittner
,
F.
Plasser
,
E.
Sangiogo Gil
, and
L.
Stojanovic
, “
Newton-X platform: New software developments for surface hopping and nuclear ensembles
,”
J. Chem. Theory Comput.
18
(
11
),
6851
6865
(
2022
).
64.
E. v.
Lenthe
,
E. J.
Baerends
, and
J. G.
Snijders
, “
Relativistic regular two-component Hamiltonians
,”
J. Chem. Phys.
99
(
6
),
4597
4610
(
1993
).
65.
M.
Merchán
,
L.
Serrano-Andrés
,
M. A.
Robb
, and
L.
Blancafort
, “
Triplet-state formation along the ultrafast decay of excited singlet cytosine
,”
J. Am. Chem. Soc.
127
(
6
),
1820
1825
(
2005
).
66.
B. H.
Ng
and
J. W.
Anderson
, “
Synthesis of selenocysteine by cysteine synthases from selenium accumulator and non-accumulator plants
,”
Phytochemistry
17
(
12
),
2069
2074
(
1978
).
67.
K. F.
Hellendahl
,
F.
Kaspar
,
X.
Zhou
,
Z.
Yang
,
Z.
Huang
,
P.
Neubauer
, and
A.
Kurreck
, “
Optimized biocatalytic synthesis of 2-selenopyrimidine nucleosides by transglycosylation
,”
ChemBioChem
22
(
11
),
2002
2009
(
2021
).
68.
R.
Shapiro
, “
Prebiotic cytosine synthesis: A critical analysis and implications for the origin of life
,”
Proc. Natl. Acad. Sci. U.S.A.
96
(
8
),
4396
4401
(
1999
).
69.
H.
Zhen
,
J.
Sharon
,
Y.
Zhaoyi
, and
L. I. U.
Daxue
, “
Synthesis method of nucleoside compound
,” Patent No. CN 106336443 A,
China National Intellectual Property Administration
, 18 January
2017
.
70.
E. S.
Scherbinina
,
D. V.
Dar’in
, and
P. S.
Lobanov
, “
Investigation on possibility of rearrangement of pyrimidine-5-carboxylic acids esters
,”
Chem. Heterocycl. Compd.
46
(
9
),
1109
1115
(
2010
).
71.
H.
Zhen
,
J.
Sharon
,
Y.
Zhaoyi
, and
L. I. U.
Daxue
, “
Novel nucleoside compounds and preparation method thereof
,” Patent No. CN 106317147 A,
China National Intellectual Property Administration
, 11 January
2017
.
72.
K.
Brown
,
M.
Dixey
,
A.
Weymouth-Wilson
, and
B.
Linclau
, “
The synthesis of gemcitabine
,”
Carbohydr. Res.
387
(
1
),
59
73
(
2014
).
73.
S.
Ogasawara
and
M.
Maeda
, “
Photochromic nucleobase: Reversible photoisomerization, photochemical properties and photoregulation of hybridization
,”
Nucleic Acids Symp. Ser.
52
,
369
370
(
2008
).
74.
M.
Kovaliov
,
M.
Segal
, and
B.
Fischer
, “
Fluorescent p-substituted-phenyl-imidazolo-cytidine analogues
,”
Tetrahedron
69
(
18
),
3698
3705
(
2013
).
75.
M.
Segal
and
B.
Fischer
, “
Analogues of uracil nucleosides with intrinsic fluorescence (NIF-analogues): Synthesis and photophysical properties
,”
Org. Biomol. Chem.
10
(
8
),
1571
1580
(
2012
).
76.
M.
Alauddin
and
M.
Abdul Aziz
, “
Spectroscopic properties of cytosine: A computational investigation
,”
Barisal Univ. J. Part 1
4
(
2
),
227
235
(
2017
).
77.
S.
Mai
,
M.
Pollum
,
L.
Martínez-Fernández
,
N.
Dunn
,
P.
Marquetand
,
I.
Corral
,
C. E.
Crespo-Hernández
, and
L.
González
, “
The origin of efficient triplet state population in sulfur-substituted nucleobases
,”
Nat. Commun.
7
,
13077
(
2016
).
78.
N.
Mahar
,
V.
Vetrivelan
,
S.
Muthu
,
S.
Javed
, and
A. A.
Al-Saadi
, “
Surface enhanced Raman spectra (SERS) and computational study of gemcitabine drug adsorption on to Au/Ag clusters with different complexes: Adsorption behavior and solvent effect (IEFPCM)—Anticancer agent
,”
Comput. Theor. Chem.
1217
,
113914
(
2022
).
79.
T.
Kaur
,
S.
Kaur
, and
P.
Kaur
, “
Development and validation of UV-spectrophotometric methods for determination of gemcitabine hydrochloride in bulk and polymeric nanoparticles
,”
Int. J. Appl. Pharm.
9
(
5
),
60
65
(
2017
).
80.
M. S.
Ali
,
M.
Waseem
,
N.
Subbarao
, and
H. A.
Al-Lohedan
, “
Noncovalent molecular interactions between antineoplastic drug gemcitabine and a carrier protein identified through spectroscopic and in silico methods
,”
Int. J. Biol. Macromol.
182
,
993
1002
(
2021
).
81.
D.
Desmaële
,
R.
Gref
, and
P.
Couvreur
, “
Squalenoylation: A generic platform for nanoparticular drug delivery
,”
J. Controlled Release
161
(
2
),
609
618
(
2012
).
82.
A.
Francés-Monerris
,
M.
Lineros-Rosa
,
M. A. A.
Miranda
,
V.
Lhiaubet-Vallet
, and
A.
Monari
, “
Photoinduced intersystem crossing in DNA oxidative lesions and epigenetic intermediates
,”
Chem. Commun.
56
,
4404
4407
(
2020
).
83.
M.
Lineros-Rosa
,
A.
Francés-Monerris
,
A.
Monari
,
M. A.
Miranda
, and
V.
Lhiaubet-Vallet
, “
Experimental and theoretical studies on thymine photodimerization mediated by oxidatively generated DNA lesions and epigenetic intermediates
,”
Phys. Chem. Chem. Phys.
22
,
25661
25668
(
2020
).
84.
T. F. J.
Kraus
,
D.
Globisch
,
M.
Wagner
,
S.
Eigenbrod
,
D.
Widmann
,
M.
Münzel
,
M.
Müller
,
T.
Pfaffeneder
,
B.
Hackner
,
W.
Feiden
,
U.
Schüller
,
T.
Carell
, and
H. A.
Kretzschmar
, “
Low values of 5-hydroxymethylcytosine (5hmC), the ‘sixth base,’ are associated with anaplasia in human brain tumors
,”
Int. J. Cancer
131
(
7
),
1577
1590
(
2012
).
85.
C. M.
Marian
, “
Spin-orbit coupling and intersystem crossing in molecules
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
(
2
),
187
203
(
2012
).
86.
Y. G.
Fang
,
D.
Valverde
,
S.
Mai
,
S.
Canuto
,
A. C.
Borin
,
G.
Cui
, and
L.
González
, “
Excited-state properties and relaxation pathways of selenium-substituted guanine nucleobase in aqueous solution and DNA duplex
,”
J. Phys. Chem. B
125
(
7
),
1778
1789
(
2021
).
87.
K. M.
Farrell
,
M. M.
Brister
,
M.
Pittelkow
,
T. I.
Sølling
, and
C. E.
Crespo-Hernández
, “
Heavy-atom-substituted nucleobases in photodynamic applications: Substitution of sulfur with selenium in 6-thioguanine induces a remarkable increase in the rate of triplet decay in 6-selenoguanine
,”
J. Am. Chem. Soc.
140
(
36
),
11214
11218
(
2018
).
88.
C.
Reichardt
,
C.
Guo
, and
C. E.
Crespo-Hernández
, “
Excited-state dynamics in 6-thioguanosine from the femtosecond to microsecond time scale
,”
J. Phys. Chem. B
115
(
12
),
3263
3270
(
2011
).
89.
B.
Ashwood
,
M.
Pollum
, and
C. E.
Crespo-Hernández
, “
Photochemical and photodynamical properties of sulfur-substituted nucleic acid bases,
,”
Photochem. Photobiol.
95
(
1
),
33
58
(
2019
).
90.
L. A.
Ortiz-Rodríguez
,
G.
Ortiz-Zayas
,
M.
Pollum
,
S. J.
Hoehn
,
S.
Jockusch
, and
C. E.
Crespo-Hernández
, “
Intramolecular charge transfer in the azathioprine prodrug quenches intersystem crossing to the reactive triplet state in 6-mercaptopurine
,”
Photochem. Photobiol.
98
(
3
),
617
632
(
2022
).
91.
S.
Yano
,
S.
Hirohara
,
M.
Obata
,
Y.
Hagiya
,
S.
Ogura
,
A.
Ikeda
,
H.
Kataoka
,
M.
Tanaka
, and
T.
Joh
, “
Current states and future views in photodynamic therapy
,”
J. Photochem. Photobiol. C: Photochem. Rev.
12
(
1
),
46
67
(
2011
).
92.
M. C.
DeRosa
and
R. J.
Crutchley
, “
Photosensitized singlet oxygen and its applications
,”
Coord. Chem. Rev.
233–234
,
351
371
, (
2002
).
93.
M. E.
Alberto
,
B. C.
De Simone
,
G.
Mazzone
,
E.
Sicilia
, and
N.
Russo
, “
The heavy atom effect on Zn(ii) phthalocyanine derivatives: A theoretical exploration of the photophysical properties
,”
Phys. Chem. Chem. Phys.
17
(
36
),
23595
23601
, (
2015
).
94.
D.
Valverde
,
S.
Mai
,
S.
Canuto
,
A. C.
Borin
, and
L.
González
, “
Ultrafast intersystem crossing dynamics of 6-selenoguanine in water
,”
JACS Au
2
(
7
),
1699
1711
(
2022
).
95.
X.-P.
Chang
,
J.-L.
Wang
,
L.-Y.
Peng
,
X.-J.
Cen
,
B.-W.
Yin
, and
B.-B.
Xie
, “
Mechanistic photophysics of tellurium-substituted cytosine: Electronic structure calculations and nonadiabatic dynamics simulations
,”
Photochem. Photobiol.
(published online) (
2023
).
96.
L.
Martínez-Fernández
,
I.
Corral
,
G.
Granucci
, and
M.
Persico
, “
Competing ultrafast intersystem crossing and internal conversion: A time resolved picture for the deactivation of 6-thioguanine
,”
Chem. Sci.
5
(
4
),
1336
1347
(
2014
).
97.
X.
Peng
,
S. H.
In
,
H.
Li
,
M. M.
Seidman
, and
M. M.
Greenberg
, “
Interstrand cross-link formation in duplex and triplex DNA by modified pyrimidines
,”
J. Am. Chem. Soc.
130
(
31
),
10299
10306
(
2008
).
98.
A.
Francés-Monerris
,
I.
Tuñón
, and
A.
Monari
, “
Hypoxia-selective dissociation mechanism of a nitroimidazole nucleoside in a DNA environment
,”
J. Phys. Chem. Lett.
10
(
21
),
6750
6754
(
2019
).
99.
Y.
Kuang
,
H.
Sun
,
J. C.
Blain
, and
X.
Peng
, “
Hypoxia-selective DNA interstrand cross-link formation by two modified nucleosides
,”
Chem.-Eur. J.
18
(
40
),
12609
12613
(
2012
).
100.
M. E.
Alberto
and
A.
Francés-Monerris
, “
A multiscale free energy method reveals an unprecedented photoactivation of a bimetallic Os(II)–Pt(II) dual anticancer agent
,”
Phys. Chem. Chem. Phys.
24
(
32
),
19584
19594
(
2022
).
101.
S. L. H.
Higgins
,
A. J.
Tucker
,
B. S. J.
Winkel
, and
K. J.
Brewer
, “
Metal to ligand charge transfer induced DNA photobinding in a Ru(II)–Pt(II) supramolecule using red light in the therapeutic window: A new mechanism for DNA modification
,”
Chem. Commun.
48
(
1
),
67
69
(
2012
).
102.
S. L. H.
Higgins
,
T. A.
White
,
B. S. J.
Winkel
, and
K. J.
Brewer
, “
Redox, spectroscopic, and photophysical properties of Ru−Pt mixed-metal complexes incorporating 4,7-Diphenyl-1,10-phenanthroline as efficient DNA binding and photocleaving agents
,”
Inorg. Chem.
50
(
2
),
463
470
(
2011
).
103.
Y.
Han
,
W.
Chen
,
Y.
Kuang
,
H.
Sun
,
Z.
Wang
, and
X.
Peng
, “
UV-induced DNA interstrand cross-linking and direct strand breaks from a new type of binitroimidazole analogue
,”
Chem. Res. Toxicol.
28
(
5
),
919
926
(
2015
).
104.
R. L.
Williams
,
H. N.
Toft
,
B.
Winkel
, and
K. J.
Brewer
, “
Synthesis, characterization, and DNA binding properties of a series of Ru, Pt mixed-metal complexes
,”
Inorg. Chem.
42
(
14
),
4394
4400
(
2003
).
105.
M.
Milkevitch
,
H.
Storrie
,
E.
Brauns
,
K. J.
Brewer
, and
B. W.
Shirley
, “
A new class of supramolecular, mixed-metal DNA-binding agents: The interaction of RuII, PtII and OsII, PtII bimetallic complexes with DNA
,”
Inorg. Chem.
36
(
20
),
4534
4538
(
1997
).
106.
J. A.
RoqueIII
,
H. D.
Cole
,
P. C.
Barrett
,
L. M.
Lifshits
,
R. O.
Hodges
,
S.
Kim
,
G.
Deep
,
A.
Francés-Monerris
,
M. E.
Alberto
,
C. G.
Cameron
, and
S. A.
McFarland
, “
Intraligand excited states turn a ruthenium oligothiophene complex into a light-triggered ubertoxin with anticancer effects in extreme hypoxia
,”
J. Am. Chem. Soc.
144
(
18
),
8317
8336
(
2022
).
107.
H. D.
Cole
,
J. A. I. I. I.
Roque
,
G.
Shi
,
L. M.
Lifshits
,
E.
Ramasamy
,
P. C.
Barrett
,
R. O.
Hodges
,
C. G.
Cameron
, and
S. A.
McFarland
, “
Anticancer agent with inexplicable potency in extreme hypoxia: Characterizing a light-triggered ruthenium ubertoxin
,”
J. Am. Chem. Soc.
144
(
22
),
9543
9547
(
2022
).

Supplementary Material

You do not currently have access to this content.