The classical three-stage model of stochastic gene expression predicts the statistics of single cell mRNA and protein number fluctuations as a function of the rates of promoter switching, transcription, translation, degradation and dilution. While this model is easily simulated, its analytical solution remains an unsolved problem. Here we modify this model to explicitly include cell-cycle dynamics and then derive an exact solution for the time-dependent joint distribution of mRNA and protein numbers. We show large differences between this model and the classical model which captures cell-cycle effects implicitly via effective first-order dilution reactions. In particular we find that the Fano factor of protein numbers calculated from a population snapshot measurement are underestimated by the classical model whereas the correlation between mRNA and protein can be either over- or underestimated, depending on the timescales of mRNA degradation and promoter switching relative to the mean cell-cycle duration time.

1.
M. B.
Elowitz
,
A. J.
Levine
,
E. D.
Siggia
, and
P. S.
Swain
, “
Stochastic gene expression in a single cell
,”
Science
297
,
1183
1186
(
2002
).
2.
W. J.
Blake
,
M.
Kærn
,
C. R.
Cantor
, and
J. J.
Collins
, “
Noise in eukaryotic gene expression
,”
Nature
422
,
633
637
(
2003
).
3.
J. M.
Raser
and
E. K.
O’Shea
, “
Control of stochasticity in eukaryotic gene expression
,”
Science
304
,
1811
1814
(
2004
).
4.
J.
Rodriguez
,
G.
Ren
,
C. R.
Day
,
K.
Zhao
,
C. C.
Chow
, and
D. R.
Larson
, “
Intrinsic dynamics of a human gene reveal the basis of expression heterogeneity
,”
Cell
176
,
213
226.e18
(
2019
).
5.
A.
Sanchez
and
I.
Golding
, “
Genetic determinants and cellular constraints in noisy gene expression
,”
Science
342
,
1188
1193
(
2013
).
6.
X.
Fu
,
H. P.
Patel
,
S.
Coppola
,
L.
Xu
,
Z.
Cao
,
T. L.
Lenstra
, and
R.
Grima
, “
Quantifying how post-transcriptional noise and gene copy number variation bias transcriptional parameter inference from mRNA distributions
,”
eLife
11
,
e82493
(
2022
).
7.
A. J. M.
Larsson
,
P.
Johnsson
,
M.
Hagemann-Jensen
,
L.
Hartmanis
,
O. R.
Faridani
,
B.
Reinius
,
Å.
Segerstolpe
,
C. M.
Rivera
,
B.
Ren
, and
R.
Sandberg
, “
Genomic encoding of transcriptional burst kinetics
,”
Nature
565
,
251
254
(
2019
).
8.
A. A.
Kolodziejczyk
,
J. K.
Kim
,
V.
Svensson
,
J. C.
Marioni
, and
S. A.
Teichmann
, “
The technology and biology of single-cell RNA sequencing
,”
Mol. Cell
58
,
610
620
(
2015
).
9.
Y.
Tanouchi
,
A.
Pai
,
H.
Park
,
S.
Huang
,
N. E.
Buchler
, and
L.
You
, “
Long-term growth data of Escherichia coli at a single-cell level
,”
Sci. Data
4
,
170036
(
2017
).
10.
A. N.
Kapanidis
,
A.
Lepore
, and
M.
El Karoui
, “
Rediscovering bacteria through single-molecule imaging in living cells
,”
Biophys. J.
115
,
190
202
(
2018
).
11.
N.
Maheshri
and
E. K.
O’Shea
, “
Living with noisy genes: How cells function reliably with inherent variability in gene expression
,”
Annu. Rev. Biophys. Biomol. Struct.
36
,
413
434
(
2007
).
12.
A.
Raj
,
C. S.
Peskin
,
D.
Tranchina
,
D. Y.
Vargas
, and
S.
Tyagi
, “
Stochastic mRNA synthesis in mammalian cells
,”
PLoS Biol.
4
,
e309
(
2006
).
13.
Z.
Cao
and
R.
Grima
, “
Analytical distributions for detailed models of stochastic gene expression in eukaryotic cells
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
4682
4692
(
2020
).
14.
J.
Paulsson
,
O. G.
Berg
, and
M.
Ehrenberg
, “
Stochastic focusing: Fluctuation-enhanced sensitivity of intracellular regulation
,”
Proc. Natl. Acad. Sci. U. S. A.
97
,
7148
7153
(
2000
).
15.
Z. S.
Singer
,
J.
Yong
,
J.
Tischler
,
J. A.
Hackett
,
A.
Altinok
,
M. A.
Surani
,
L.
Cai
, and
M. B.
Elowitz
, “
Dynamic heterogeneity and DNA methylation in embryonic stem cells
,”
Mol. Cell
55
,
319
331
(
2014
).
16.
J.
Peccoud
and
B.
Ycart
, “
Markovian modeling of gene-product synthesis
,”
Theor. Popul. Biol.
48
,
222
234
(
1995
).
17.
S.
Iyer-Biswas
,
F.
Hayot
, and
C.
Jayaprakash
, “
Stochasticity of gene products from transcriptional pulsing
,”
Phys. Rev. E
79
,
031911
(
2009
).
18.
A.
Singh
and
P.
Bokes
, “
Consequences of mRNA transport on stochastic variability in protein levels
,”
Biophys. J.
103
,
1087
1096
(
2012
).
19.
N.
Friedman
,
L.
Cai
, and
X. S.
Xie
, “
Linking stochastic dynamics to population distribution: An analytical framework of gene expression
,”
Phys. Rev. Lett.
97
,
168302
(
2006
).
20.
V.
Shahrezaei
and
P. S.
Swain
, “
Analytical distributions for stochastic gene expression
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
17256
17261
(
2008
).
21.
C.
Jia
and
R.
Grima
, “
Coupling gene expression dynamics to cell size dynamics and cell cycle events: Exact and approximate solutions of the extended telegraph model
,”
Iscience
26
,
105746
(
2023
).
22.
C.
Jia
and
R.
Grima
, “
Frequency domain analysis of fluctuations of mRNA and protein copy numbers within a cell lineage: Theory and experimental validation
,”
Phys. Rev. X
11
,
021032
(
2021
).
23.
C.
Jia
,
A.
Singh
, and
R.
Grima
, “
Concentration fluctuations in growing and dividing cells: Insights into the emergence of concentration homeostasis
,”
PLoS Comput. Biol.
18
,
e1010574
(
2022
).
24.
L.
Ham
,
R. D.
Brackston
, and
M. P. H.
Stumpf
, “
Extrinsic noise and heavy-tailed laws in gene expression
,”
Phys. Rev. Lett.
124
,
108101
(
2020
).
25.
J.
Jedrak
,
M.
Kwiatkowski
, and
A.
Ochab-Marcinek
, “
Exactly solvable model of gene expression in a proliferating bacterial cell population with stochastic protein bursts and protein partitioning
,”
Phys. Rev. E
99
,
042416
(
2019
).
26.
C. H.
Beentjes
,
R.
Perez-Carrasco
, and
R.
Grima
, “
Exact solution of stochastic gene expression models with bursting, cell cycle and replication dynamics
,”
Phys. Rev. E
101
,
032403
(
2020
).
27.
R.
Perez-Carrasco
,
C.
Beentjes
, and
R.
Grima
, “
Effects of cell cycle variability on lineage and population measurements of messenger RNA abundance
,”
J. R. Soc. Interface
17
,
20200360
(
2020
).
28.
I. G.
Johnston
and
N. S.
Jones
, “
Closed-form stochastic solutions for non-equilibrium dynamics and inheritance of cellular components over many cell divisions
,”
Proc. R. Soc. London, Ser. A
471
,
20150050
(
2015
).
29.
M.
Soltani
and
A.
Singh
, “
Effects of cell-cycle-dependent expression on random fluctuations in protein levels
,”
R. Soc. Open Sci.
3
,
160578
(
2016
).
30.
M.
Soltani
,
C. A.
Vargas-Garcia
,
D.
Antunes
, and
A.
Singh
, “
Intercellular variability in protein levels from stochastic expression and noisy cell cycle processes
,”
PLoS Comput. Biol.
12
,
e1004972
(
2016
).
31.
P.
Bokes
,
J. R.
King
,
A. T.
Wood
, and
M.
Loose
, “
Exact and approximate distributions of protein and mRNA levels in the low-copy regime of gene expression
,”
J. Math. Biol.
64
,
829
854
(
2012
).
32.
H.
Pendar
,
T.
Platini
, and
R. V.
Kulkarni
, “
Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes
,”
Phys. Rev. E
87
,
042720
(
2013
).
33.
J.
Paulsson
, “
Models of stochastic gene expression
,”
Phys. Life Rev.
2
,
157
175
(
2005
).
34.
N.
Brenner
,
E.
Braun
,
A.
Yoney
,
L.
Susman
,
J.
Rotella
, and
H.
Salman
, “
Single-cell protein dynamics reproduce universal fluctuations in cell populations
,”
Eur. Phys. J. E
38
,
102
(
2015
).
35.
B.
Schwanhäusser
,
D.
Busse
,
N.
Li
,
G.
Dittmar
,
J.
Schuchhardt
,
J.
Wolf
,
W.
Chen
, and
M.
Selbach
, “
Global quantification of mammalian gene expression control
,”
Nature
473
,
337
342
(
2011
).
36.
N. G.
van Kampen
,
Stochastic Processes in Physics and Chemistry
(
Elsevier
,
1992
), Vol.
1
.
37.
Z.
Cao
and
R.
Grima
, “
Linear mapping approximation of gene regulatory networks with stochastic dynamics
,”
Nat. Commun.
9
,
3305
(
2018
).
38.
P.
Kurasov
,
A.
Lück
,
D.
Mugnolo
, and
V.
Wolf
, “
Stochastic hybrid models of gene regulatory networks—A PDE approach
,”
Math. Biosci.
305
,
170
177
(
2018
).
39.
See https://dlmf.nist.gov/ for Nist digital library of mathematical functions, Release 1.1.10 of 15 June 2023.
40.
D. T.
Gillespie
, “
Stochastic simulation of chemical kinetics
,”
Annu. Rev. Phys. Chem.
58
,
35
55
(
2007
).
41.
D.
Schnoerr
,
G.
Sanguinetti
, and
R.
Grima
, “
Approximation and inference methods for stochastic biochemical kinetics—A tutorial review
,”
J. Phys. A: Math. Theor.
50
,
093001
(
2017
).
42.
O. G.
Berg
, “
A model for the statistical fluctuations of protein numbers in a microbial population
,”
J. Theor. Biol.
71
,
587
603
(
1978
).
43.
Z.
Cao
and
R.
Grima
, “
Accuracy of parameter estimation for auto-regulatory transcriptional feedback loops from noisy data
,”
J. R. Soc. Interface
16
,
20180967
(
2019
).
44.
C.
Albayrak
,
C. A.
Jordi
,
C.
Zechner
,
J.
Lin
,
C. A.
Bichsel
,
M.
Khammash
, and
S.
Tay
, “
Digital quantification of proteins and mRNA in single mammalian cells
,”
Mol. Cell
61
,
914
924
(
2016
).
45.
Q.
Jiang
,
X.
Fu
,
S.
Yan
,
R.
Li
,
W.
Du
,
Z.
Cao
,
F.
Qian
, and
R.
Grima
, “
Neural network aided approximation and parameter inference of non-Markovian models of gene expression
,”
Nat. Commun.
12
,
2618
(
2021
).
You do not currently have access to this content.