The research and development of absorbing materials with high absorbing capacity, wide effective absorption bandwidth, and lightweight has always been interesting. In this research, a facile hydrothermal method was used to prepare MnFe2O4, and the grain size of MnFe2O4 decreased with increasing hydrothermal temperature. When the size of MnFe2O4 nanoparticles is less than 10 nm, its quantum size effect and surface effect make its electromagnetic microwave absorption performance greatly optimized. When the thickness of MnFe2O4-110 °C is 2.57 mm, the minimum reflection loss (RLmin) is −35.28 dB. Based on this, light porous diatomite and a three-dimensional polyaniline network are introduced. Diatomite is used as the base material to effectively reduce the agglomeration of MnFe2O4 quantum dots. The relatively high surface area introduced by a three-dimensional network of polyaniline promotes the orientation, interfacial polarization, multiple relaxation, and impedance matching, thereby generating further dielectric loss. Additionally, the magnetic properties of manganese ferrite and the strong electrical conductivity of polyaniline play an appropriate complementary role in electromagnetic wave absorption. The RLmin of MnFe2O4/PANI/diatomite is −56.70 dB at 11.12 GHz with an absorber layer thickness of 2.57 mm. The effective frequency bandwidth (RL < −10 dB) ranges from 9.21 to 18.00 GHz. The absorption mechanism indicates that the high absorption intensity is the result of the synergistic effect of impedance matching, conduction losses, polarization losses, and magnetic losses.

2.
C.
Wang
et al,
Composites, Part B
205
,
108529
(
2021
).
3.
M.
Zhang
et al,
Composites, Part B
190
,
107902
(
2020
).
4.
N.
Aggarwal
and
S. B.
Narang
,
J. Alloys Compd.
866
,
157461
(
2021
).
5.
R.
Jaiswal
et al,
Mater. Sci. Eng. B
262
,
114711
(
2020
).
6.
J.
Wang
et al,
J. Colloid Interface Sci.
586
,
479
–490 (
2021
).
7.
A.
Saha
,
S.
Sohoni
, and
R.
Viswanatha
,
J. Phys. Chem. C
123
,
2421
(
2019
).
8.
S.
Fan
et al,
Dalton Trans.
47
,
12769
12782
(
2018
).
9.
L.
Su
et al,
J. Mater. Chem. A
6
,
9997
(
2018
).
10.
C. P.
Chen Guanzhen
,
D.
Xu
, and
W.
Min
,
Chin. J. Mater. Res.
36
,
29
–39 (
2022
).
11.
Z. G.
Gao
et al,
Composites, Part B
179
,
107417
(
2019
).
12.
J.
Xue
et al,
J. Magn. Magn. Mater.
514
,
167168
(
2020
).
13.
T.
Shang
et al,
Appl. Surf. Sci.
434
,
234
(
2018
).
14.
X.
Zhou
et al,
J. Mater. Sci. Technol.
87
,
120
(
2021
).
16.
M.
Zahid
et al,
J. Thermoplast. Compos. Mater.
36
,
1717
(
2023
).
17.
A.
Nazir
,
J. Thermoplast. Compos. Mater.
35
,
1790
(
2020
).
18.
M.
Yang
,
Y.
Yuan
,
Y.
Li
,
X.
Sun
,
S.
Wang
,
L.
Liang
,
Y.
Ning
,
J.
Li
,
W.
Yin
, and
Y.
Li
,
ACS Appl. Mater. Interfaces
12
,
33128
(
2020
).
20.
Y.-Y.
Wang
et al,
Composites, Part B
199
,
108309
(
2020
).
21.
B.
Wang
et al,
Appl. Surf. Sci.
591
,
153176
(
2022
).
22.
J.
Zhao
et al,
J. Mater. Sci. Technol.
126
,
141
(
2022
).
24.
W.
Zhang
et al,
J. Magn. Magn. Mater.
397
,
255
–259 (
2016
).
26.
Z.
Chen
et al,
J. Colloid Interface Sci.
582
,
137
(
2021
).
27.
M.
Shirzadi-Ahodashti
et al,
Appl. Organomet. Chem.
34
,
e5614
(
2020
).
28.
R.
Ji
et al,
J. Alloys Compd.
883
,
160839
(
2021
).
29.
B.
Dai
et al,
J. Colloid Interface Sci.
627
,
113
(
2022
).
30.
31.
P. A.
Asogekar
et al,
Mater. Res. Bull.
141
,
111330
(
2021
).
32.
X.
Wang
et al,
Appl. Surf. Sci.
427
,
1054
–1063 (
2018
).
33.
J.
Zhao
,
M.
Li
, and
X.
Gao
,
J. Alloys Compd.
915
,
165439
(
2022
).
35.
36.
C.
Ma
et al,
Adv. Powder Technol.
28
,
438
(
2017
).
37.
G.
Yu
et al,
ACS Appl. Mater. Interfaces
15
,
39559
(
2023
).
38.
L.
Zhao
et al,
Appl. Surf. Sci.
592
,
153324
(
2022
).
39.
J.
Ding
and
L.
Cheng
,
J. Alloys Compd.
881
,
160574
(
2021
).
40.
S.
Li
et al,
J. Magn. Magn. Mater.
486
,
165259
(
2019
).
42.
H.
Entezari
et al,
Mater. Chem. Phys.
266
,
124508
(
2021
).
45.
Y.
Su
et al,
J. Alloys Compd.
891
,
161975
(
2022
).
46.
F.
Zhang
et al,
Composites, Part B
204
,
108491
(
2021
).
47.
Q. V.
Thi
et al,
Mater. Chem. Phys.
266
,
124530
(
2021
).
48.
F.
Long
et al,
J. Alloys Compd.
906
,
164197
(
2022
).
49.
T.
Peng
et al,
Appl. Surf. Sci.
613
,
156001
(
2023
).
50.
Kiran
and
N.
Thakur
,
Powder Technol.
410
,
117895
(
2022
).
51.
X.
Li
et al,
J. Colloid Interface Sci.
654
,
96
–106 (
2024
).
52.
F.
Jiang
,
X.
Wei
, and
J.
Zheng
,
Mater. Res. Express
9
,
106101
(
2022
).
53.
J.-Q.
Zhu
et al,
RSC Adv.
6
,
88104
(
2016
).
54.
H.
Wang
et al,
Prog. Org. Coat.
139
,
105476
(
2020
).
You do not currently have access to this content.