Photocatalytic water splitting for green hydrogen production is hindered by the sluggish kinetics of oxygen evolution reaction (OER). Loading a co-catalyst is essential for accelerating the kinetics, but the detailed reaction mechanism and role of the co-catalyst are still obscure. Here, we focus on cobalt oxide (CoOx) loaded on bismuth vanadate (BiVO4) to investigate the impact of CoOx on the OER mechanism. We employ photoelectrochemical impedance spectroscopy and simultaneous measurements of photoinduced absorption and photocurrent. The reduction of V5+ in BiVO4 promotes the formation of a surface state on CoOx that plays a crucial role in the OER. The third-order reaction rate with respect to photohole charge density indicates that reaction intermediate species accumulate in the surface state through a three-electron oxidation process prior to the rate-determining step. Increasing the excitation light intensity onto the CoOx-loaded anode improves the photoconversion efficiency significantly, suggesting that the OER reaction at dual sites in an amorphous CoOx(OH)y layer dominates over single sites. Therefore, CoOx is directly involved in the OER by providing effective reaction sites, stabilizing reaction intermediates, and improving the charge transfer rate. These insights help advance our understanding of co-catalyst-assisted OER to achieve efficient water splitting.

1.
K.
Maeda
and
K.
Domen
, “
New non-oxide photocatalysts designed for overall water splitting under visible light
,”
J. Phys. Chem. C
111
(
22
),
7851
7861
(
2007
).
2.
F. E.
Osterloh
, “
Inorganic materials as catalysts for photochemical splitting of water
,”
Chem. Mater.
20
(
1
),
35
54
(
2008
).
3.
M. R.
Wasielewski
, “
Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems
,”
Acc. Chem. Res.
42
(
12
),
1910
1921
(
2009
).
4.
A.
Kudo
and
Y.
Miseki
, “
Heterogeneous photocatalyst materials for water splitting
,”
Chem. Soc. Rev.
38
(
1
),
253
278
(
2009
).
5.
K.
Maeda
and
K.
Domen
, “
Photocatalytic water splitting: Recent progress and future challenges
,”
J. Phys. Chem. Lett.
1
(
18
),
2655
2661
(
2010
).
6.
C. X.
Kronawitter
,
L.
Vayssieres
,
S.
Shen
,
L.
Guo
,
D. A.
Wheeler
,
J. Z.
Zhang
,
B. R.
Antoun
, and
S. S.
Mao
, “
A perspective on solar-driven water splitting with all-oxide hetero-nanostructures
,”
Energy Environ. Sci.
4
(
10
),
3889
3899
(
2011
).
7.
D. G.
Nocera
, “
The artificial leaf
,”
Acc. Chem. Res.
45
(
5
),
767
776
(
2012
).
8.
Y.
Tachibana
,
L.
Vayssieres
, and
J. R.
Durrant
, “
Artificial photosynthesis for solar water-splitting
,”
Nat. Photonics
6
(
8
),
511
518
(
2012
).
9.
K.
Takanabe
, “
Photocatalytic water splitting: Quantitative approaches toward photocatalyst by design
,”
ACS Catal.
7
(
11
),
8006
8022
(
2017
).
10.
B.
Klahr
,
S.
Gimenez
,
F.
Fabregat-Santiago
,
J.
Bisquert
, and
T. W.
Hamann
, “
Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes
,”
Energy Environ. Sci.
5
(
6
),
7626
7636
(
2012
).
11.
B.
Klahr
and
T.
Hamann
, “
Water oxidation on hematite photoelectrodes: Insight into the nature of surface states through in situ spectroelectrochemistry
,”
J. Phys. Chem. C
118
(
19
),
10393
10399
(
2014
).
12.
O.
Zandi
and
T. W.
Hamann
, “
Enhanced water splitting efficiency through selective surface state removal
,”
J. Phys. Chem. Lett.
5
(
9
),
1522
1526
(
2014
).
13.
B.
Iandolo
and
A.
Hellman
, “
The role of surface states in the oxygen evolution reaction on hematite
,”
Angew. Chem., Int. Ed.
53
(
49
),
13404
13408
(
2014
).
14.
B. J.
Trześniewski
,
I. A.
Digdaya
,
T.
Nagaki
,
S.
Ravishankar
,
I.
Herraiz-Cardona
,
D. A.
Vermaas
,
A.
Longo
,
S.
Gimenez
, and
W. A.
Smith
, “
Near-complete suppression of surface losses and total internal quantum efficiency in BiVO4 photoanodes
,”
Energy Environ. Sci.
10
(
6
),
1517
1529
(
2017
).
15.
Z.
Wang
,
F.
Fan
,
S.
Wang
,
C.
Ding
,
Y.
Zhao
, and
C.
Li
, “
Bridging surface states and current–potential response over hematite-based photoelectrochemical water oxidation
,”
RSC Adv.
6
(
88
),
85582
85586
(
2016
).
16.
Q.
Shi
,
S.
Murcia-López
,
P.
Tang
,
C.
Flox
,
J. R.
Morante
,
Z.
Bian
,
H.
Wang
, and
T.
Andreu
, “
Role of tungsten doping on the surface states in BiVO4 photoanodes for water oxidation: Tuning the electron trapping process
,”
ACS Catal.
8
(
4
),
3331
3342
(
2018
).
17.
K.
George
,
T.
Khachatrjan
,
M.
van Berkel
,
V.
Sinha
, and
A.
Bieberle-Hütter
, “
Understanding the impact of different types of surface states on photoelectrochemical water oxidation: A microkinetic modeling approach
,”
ACS Catal.
10
(
24
),
14649
14660
(
2020
).
18.
L.
Palmolahti
,
H.
Ali-Löytty
,
R.
Khan
,
J.
Saari
,
N. V.
Tkachenko
, and
M.
Valden
, “
Modification of surface states of hematite-based photoanodes by submonolayer of TiO2 for enhanced solar water splitting
,”
J. Phys. Chem. C
124
(
24
),
13094
13101
(
2020
).
19.
L.-P.
Wang
and
T.
Van Voorhis
, “
Direct-coupling O2 bond forming a pathway in cobalt oxide water oxidation catalysts
,”
J. Phys. Chem. Lett.
2
(
17
),
2200
2204
(
2011
).
20.
X.
Li
and
P. E. M.
Siegbahn
, “
Water oxidation mechanism for synthetic Co–oxides with small nuclearity
,”
J. Am. Chem. Soc.
135
(
37
),
13804
13813
(
2013
).
21.
G.
Mattioli
,
P.
Giannozzi
,
A.
Amore Bonapasta
, and
L.
Guidoni
, “
Reaction pathways for oxygen evolution promoted by cobalt catalyst
,”
J. Am. Chem. Soc.
135
(
41
),
15353
15363
(
2013
).
22.
M.
Zhang
,
M.
de Respinis
, and
H.
Frei
, “
Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst
,”
Nat. Chem.
6
(
4
),
362
367
(
2014
).
23.
C. P.
Plaisance
and
R. A.
van Santen
, “
Structure sensitivity of the oxygen evolution reaction catalyzed by cobalt(II,III) oxide
,”
J. Am. Chem. Soc.
137
(
46
),
14660
14672
(
2015
).
24.
H. H.
Pham
,
M.-J.
Cheng
,
H.
Frei
, and
L.-W.
Wang
, “
Surface proton hopping and fast-kinetics pathway of water oxidation on Co3O4 (001) surface
,”
ACS Catal.
6
(
8
),
5610
5617
(
2016
).
25.
A. M.
Ullman
,
C. N.
Brodsky
,
N.
Li
,
S.-L.
Zheng
, and
D. G.
Nocera
, “
Probing edge site reactivity of oxidic cobalt water oxidation catalysts
,”
J. Am. Chem. Soc.
138
(
12
),
4229
4236
(
2016
).
26.
A.
Moysiadou
,
S.
Lee
,
C.-S.
Hsu
,
H. M.
Chen
, and
X.
Hu
, “
Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: Cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step
,”
J. Am. Chem. Soc.
142
(
27
),
11901
11914
(
2020
).
27.
A.
Curutchet
,
P.
Colinet
,
C.
Michel
,
S. N.
Steinmann
, and
T.
Le Bahers
, “
Two-sites are better than one: Revisiting the OER mechanism on CoOOH by DFT with electrode polarization
,”
Phys. Chem. Chem. Phys.
22
(
13
),
7031
7038
(
2020
).
28.
C. A.
Mesa
,
L.
Francàs
,
K. R.
Yang
,
P.
Garrido-Barros
,
E.
Pastor
,
Y.
Ma
,
A.
Kafizas
,
T. E.
Rosser
,
M. T.
Mayer
,
E.
Reisner
,
M.
Grätzel
,
V. S.
Batista
, and
J. R.
Durrant
, “
Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT
,”
Nat. Chem.
12
(
1
),
82
89
(
2020
).
29.
F.
Le Formal
,
E.
Pastor
,
S. D.
Tilley
,
C. A.
Mesa
,
S. R.
Pendlebury
,
M.
Grätzel
, and
J. R.
Durrant
, “
Rate law analysis of water oxidation on a hematite surface
,”
J. Am. Chem. Soc.
137
(
20
),
6629
6637
(
2015
).
30.
Y.
Ma
,
C. A.
Mesa
,
E.
Pastor
,
A.
Kafizas
,
L.
Francàs
,
F.
Le Formal
,
S. R.
Pendlebury
, and
J. R.
Durrant
, “
Rate law analysis of water oxidation and hole scavenging on a BiVO4 photoanode
,”
ACS Energy Lett.
1
(
3
),
618
623
(
2016
).
31.
A.
Kafizas
,
Y.
Ma
,
E.
Pastor
,
S. R.
Pendlebury
,
C.
Mesa
,
L.
Francàs
,
F.
Le Formal
,
N.
Noor
,
M.
Ling
,
C.
Sotelo-Vazquez
,
C. J.
Carmalt
,
I. P.
Parkin
, and
J. R.
Durrant
, “
Water oxidation kinetics of accumulated holes on the surface of a TiO2 photoanode: A rate law analysis
,”
ACS Catal.
7
(
7
),
4896
4903
(
2017
).
32.
Y.
Zhang
,
H.
Zhang
,
A.
Liu
,
C.
Chen
,
W.
Song
, and
J.
Zhao
, “
Rate-limiting O–O bond formation pathways for water oxidation on hematite photoanode
,”
J. Am. Chem. Soc.
140
(
9
),
3264
3269
(
2018
).
33.
J.
Li
,
W.
Wan
,
C. A.
Triana
,
H.
Chen
,
Y.
Zhao
,
C. K.
Mavrokefalos
, and
G. R.
Patzke
, “
Reaction kinetics and interplay of two different surface states on hematite photoanodes for water oxidation
,”
Nat. Commun.
12
(
1
),
255
(
2021
).
34.
Y.
Park
,
K. J.
McDonald
, and
K.-S.
Choi
, “
Progress in bismuth vanadate photoanodes for use in solar water oxidation
,”
Chem. Soc. Rev.
42
(
6
),
2321
2337
(
2013
).
35.
J. H.
Kim
and
J. S.
Lee
, “
Elaborately modified BiVO4 photoanodes for solar water splitting
,”
Adv. Mater.
31
(
20
),
1806938
(
2019
).
36.
H.
Ye
,
J.
Lee
,
J. S.
Jang
, and
A. J.
Bard
, “
Rapid screening of BiVO4-based photocatalysts by scanning electrochemical microscopy (SECM) and studies of their photoelectrochemical properties
,”
J. Phys. Chem. C
114
(
31
),
13322
13328
(
2010
).
37.
W.
Luo
,
Z.
Yang
,
Z.
Li
,
J.
Zhang
,
J.
Liu
,
Z.
Zhao
,
Z.
Wang
,
S.
Yan
,
T.
Yu
, and
Z.
Zou
, “
Solar hydrogen generation from seawater with a modified BiVO4 photoanode
,”
Energy Environ. Sci.
4
(
10
),
4046
4051
(
2011
).
38.
H. S.
Park
,
K. E.
Kweon
,
H.
Ye
,
E.
Paek
,
G. S.
Hwang
, and
A. J.
Bard
, “
Factors in the metal doping of BiVO4 for improved photoelectrocatalytic activity as studied by scanning electrochemical microscopy and first-principles density-functional calculation
,”
J. Phys. Chem. C
115
(
36
),
17870
17879
(
2011
).
39.
S. P.
Berglund
,
A. J. E.
Rettie
,
S.
Hoang
, and
C. B.
Mullins
, “
Incorporation of Mo and W into nanostructured BiVO4 films for efficient photoelectrochemical water oxidation
,”
Phys. Chem. Chem. Phys.
14
(
19
),
7065
7075
(
2012
).
40.
J.
Ran
,
J.
Zhang
,
J.
Yu
,
M.
Jaroniec
, and
S. Z.
Qiao
, “
Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting
,”
Chem. Soc. Rev.
43
(
22
),
7787
7812
(
2014
).
41.
M. W.
Kanan
and
D. G.
Nocera
, “
In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+
,”
Science
321
,
1072
1075
(
2008
).
42.
D. K.
Zhong
,
S.
Choi
, and
D. R.
Gamelin
, “
Near-complete suppression of surface recombination in solar photoelectrolysis by ‘Co-Pi’ catalyst-modified W:BiVO4
,”
J. Am. Chem. Soc.
133
(
45
),
18370
18377
(
2011
).
43.
Y.
Ma
,
A.
Kafizas
,
S. R.
Pendlebury
,
F.
Le Formal
, and
J. R.
Durrant
, “
Photoinduced absorption spectroscopy of CoPi on BiVO4: The function of CoPi during water oxidation
,”
Adv. Funct. Mater.
26
(
27
),
4951
4960
(
2016
).
44.
C.
Zachaus
,
F. F.
Abdi
,
L. M.
Peter
, and
R.
van de Krol
, “
Photocurrent of BiVO4 is limited by surface recombination, not surface catalysis
,”
Chem. Sci.
8
(
5
),
3712
3719
(
2017
).
45.
Z.
Pan
,
V.
Nandal
,
Y.
Pihosh
,
T.
Higashi
,
T.
Liu
,
J. A.
Röhr
,
K.
Seki
,
C.
Chu
,
K.
Domen
, and
K.
Katayama
, “
Elucidating the role of surface energetics on charge separation during photoelectrochemical water splitting
,”
ACS Catal.
12
(
23
),
14727
14734
(
2022
).
46.
T.
Chugenji
,
Z.
Pan
, and
K.
Katayama
, “
Effect of CoOx and Rh cocatalysts on local charge carrier dynamics of BiVO4 particles by pattern-illumination time-resolved phase microscopy
,”
J. Phys. Chem. C
126
(
45
),
19319
19326
(
2022
).
47.
J.
Zhu
,
F.
Fan
,
R.
Chen
,
H.
An
,
Z.
Feng
, and
C.
Li
, “
Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst
,”
Angew. Chem., Int. Ed.
54
(
31
),
9111
9114
(
2015
).
48.
R.
Chen
,
F.
Fan
, and
C.
Li
, “
Unraveling charge-separation mechanisms in photocatalyst particles by spatially resolved surface photovoltage techniques
,”
Angew. Chem., Int. Ed.
61
(
16
),
e202117567
(
2022
).
49.
H.
Ye
,
H. S.
Park
, and
A. J.
Bard
, “
Screening of electrocatalysts for photoelectrochemical water oxidation on W-doped BiVO4 photocatalysts by scanning electrochemical microscopy
,”
J. Phys. Chem. C
115
(
25
),
12464
12470
(
2011
).
50.
F.
Lin
and
S. W.
Boettcher
, “
Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes
,”
Nat. Mater.
13
(
1
),
81
86
(
2014
).
51.
M. R.
Nellist
,
F. A. L.
Laskowski
,
F.
Lin
,
T. J.
Mills
, and
S. W.
Boettcher
, “
Semiconductor-electrocatalyst interfaces: Theory, experiment, and applications in photoelectrochemical water splitting
,”
Acc. Chem. Res.
49
(
4
),
733
740
(
2016
).
52.
F.
Laskowski
,
M. R.
Nellist
,
J.
Qiu
, and
S. W.
Boettcher
, “
Metal oxide/(oxy)hydroxide overlayers as hole collectors and oxygen-evolution catalysts on water-splitting photoanodes
,”
J. Am. Chem. Soc.
141
(
4
),
1394
1405
(
2019
).
53.
D. R.
Gamelin
, “
Catalyst or spectator?
,”
Nat. Chem.
4
,
965
(
2012
).
54.
A.
Kudo
,
K.
Ueda
,
H.
Kato
, and
I.
Mikami
, “
Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution
,”
Catal. Lett.
53
(
3–4
),
229
230
(
1998
).
55.
A.
Kudo
,
K.
Omori
, and
H.
Kato
, “
A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties
,”
J. Am. Chem. Soc.
121
(
49
),
11459
11467
(
1999
).
56.
J. A.
Koza
,
C. M.
Hull
,
Y.-C.
Liu
, and
J. A.
Switzer
, “
Deposition of β-Co(OH)2 films by electrochemical reduction of tris(ethylenediamine)cobalt(III) in alkaline solution
,”
Chem. Mater.
25
(
9
),
1922
1926
(
2013
).
57.
Y.-C.
Liu
,
J. A.
Koza
, and
J. A.
Switzer
, “
Conversion of electrodeposited Co(OH)2 to CoOOH and Co3O4, and comparison of their catalytic activity for the oxygen evolution reaction
,”
Electrochim. Acta
140
,
359
365
(
2014
).
58.
M. S.
Burke
,
M. G.
Kast
,
L.
Trotochaud
,
A. M.
Smith
, and
S. W.
Boettcher
, “
Cobalt–iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism
,”
J. Am. Chem. Soc.
137
(
10
),
3638
3648
(
2015
).
59.
M.
Risch
,
F.
Ringleb
,
M.
Kohlhoff
,
P.
Bogdanoff
,
P.
Chernev
,
I.
Zaharieva
, and
H.
Dau
, “
Water oxidation by amorphous cobalt-based oxides: In situ tracking of redox transitions and mode of catalysis
,”
Energy Environ. Sci.
8
(
2
),
661
674
(
2015
).
60.
A.
Bergmann
,
E.
Martinez-Moreno
,
D.
Teschner
,
P.
Chernev
,
M.
Gliech
,
J. F.
de Araújo
,
T.
Reier
,
H.
Dau
, and
P.
Strasser
, “
Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution
,”
Nat. Commun.
6
(
1
),
8625
(
2015
).
61.
M.
Favaro
,
J.
Yang
,
S.
Nappini
,
E.
Magnano
,
F. M.
Toma
,
E. J.
Crumlin
,
J.
Yano
, and
I. D.
Sharp
, “
Understanding the oxygen evolution reaction mechanism on CoOx using operando ambient-pressure X-ray photoelectron spectroscopy
,”
J. Am. Chem. Soc.
139
(
26
),
8960
8970
(
2017
).
62.
J.
Yang
,
J. K.
Cooper
,
F. M.
Toma
,
K. A.
Walczak
,
M.
Favaro
,
J. W.
Beeman
,
L. H.
Hess
,
C.
Wang
,
C.
Zhu
,
S.
Gul
,
J.
Yano
,
C.
Kisielowski
,
A.
Schwartzberg
, and
I. D.
Sharp
, “
A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes
,”
Nat. Mater.
16
(
3
),
335
341
(
2017
).
63.
A.
Bergmann
,
T. E.
Jones
,
E.
Martinez Moreno
,
D.
Teschner
,
P.
Chernev
,
M.
Gliech
,
T.
Reier
,
H.
Dau
, and
P.
Strasser
, “
Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction
,”
Nat. Catal.
1
(
9
),
711
719
(
2018
).
64.
T.
Deng
,
W.
Zhang
,
O.
Arcelus
,
J.-G.
Kim
,
J.
Carrasco
,
S. J.
Yoo
,
W.
Zheng
,
J.
Wang
,
H.
Tian
,
H.
Zhang
,
X.
Cui
, and
T.
Rojo
, “
Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors
,”
Nat. Commun.
8
(
1
),
15194
(
2017
).
65.
Y.
Han
,
S.
Axnanda
,
E. J.
Crumlin
,
R.
Chang
,
B.
Mao
,
Z.
Hussain
,
P. N.
Ross
,
Y.
Li
, and
Z.
Liu
, “
Observing the electrochemical oxidation of Co metal at the solid/liquid interface using ambient pressure X-ray photoelectron spectroscopy
,”
J. Phys. Chem. B
122
(
2
),
666
671
(
2018
).
66.
F.
Reikowski
,
F.
Maroun
,
I.
Pacheco
,
T.
Wiegmann
,
P.
Allongue
,
J.
Stettner
, and
O. M.
Magnussen
, “
Operando surface X-ray diffraction studies of structurally defined Co3O4 and CoOOH thin films during oxygen evolution
,”
ACS Catal.
9
(
5
),
3811
3821
(
2019
).
67.
T.
Wiegmann
,
I.
Pacheco
,
F.
Reikowski
,
J.
Stettner
,
C.
Qiu
,
M.
Bouvier
,
M.
Bertram
,
F.
Faisal
,
O.
Brummel
,
J.
Libuda
,
J.
Drnec
,
P.
Allongue
,
F.
Maroun
, and
O. M.
Magnussen
, “
Operando identification of the reversible skin layer on Co3O4 as a three-dimensional reaction zone for oxygen evolution
,”
ACS Catal.
12
(
6
),
3256
3268
(
2022
).
68.
Y.
Hu
,
H.
Chen
, and
Q.
Lu
, “
Understanding the phase equilibrium and kinetics of electrochemically driven phase transition in CoOxHy during electrocatalytic reactions
,”
J. Phys. Chem. C
126
(
43
),
18198
18207
(
2022
).
69.
M.
Risch
,
V.
Khare
,
I.
Zaharieva
,
L.
Gerencser
,
P.
Chernev
, and
H.
Dau
, “
Cobalt–oxo core of a water-oxidizing catalyst film
,”
J. Am. Chem. Soc.
131
(
20
),
6936
6937
(
2009
).
70.
M. W.
Kanan
,
J.
Yano
,
Y.
Surendranath
,
M.
Dincă
,
V. K.
Yachandra
, and
D. G.
Nocera
, “
Structure and valency of a cobalt–phosphate water oxidation catalyst determined by in situ X-ray spectroscopy
,”
J. Am. Chem. Soc.
132
(
39
),
13692
13701
(
2010
).
71.
R. S.
Khnayzer
,
M. W.
Mara
,
J.
Huang
,
M. L.
Shelby
,
L. X.
Chen
, and
F. N.
Castellano
, “
Structure and activity of photochemically deposited ‘CoPi’ oxygen evolving catalyst on titania
,”
ACS Catal.
2
(
10
),
2150
2160
(
2012
).
72.
A.
Iwase
,
H.
Ito
,
Q.
Jia
, and
A.
Kudo
, “
Solar-driven BiVO4 photoanodes prepared by a facile screen printing method
,”
Chem. Lett.
45
(
2
),
152
154
(
2016
).
73.
A.
Iwase
,
S.
Ikeda
, and
A.
Kudo
, “
Efficient solar water oxidation to oxygen over Mo-doped BiVO4 thin film photoanode prepared by a facile aqueous solution route
,”
Chem. Lett.
46
(
5
),
651
654
(
2017
).
74.
Q.
Jia
,
K.
Iwashina
, and
A.
Kudo
, “
Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation
,”
Proc. Natl. Acad. Sci. U. S. A.
109
(
29
),
11564
11569
(
2012
).
75.
N. T.
Takahashi
,
N.
Isomura
,
S.
Kosaka
,
H.
Mori
,
Y.
Kimoto
,
T.
Ohmori
,
T.
Aoyama
,
T.
Sano
, and
F.
Itoigawa
, “
Direct silanol analysis of tribological surfaces using synchrotron radiation
,”
Tribol. Int.
148
,
106304
(
2020
).
76.
J.
Chivot
,
L.
Mendoza
,
C.
Mansour
,
T.
Pauporté
, and
M.
Cassir
, “
New insight in the behaviour of Co–H2O system at 25–150 °C, based on revised Pourbaix diagrams
,”
Corros. Sci.
50
(
1
),
62
69
(
2008
).
77.
A.
Iwase
,
S.
Nozawa
,
S.
Adachi
, and
A.
Kudo
, “
Preparation of Mo- and W-doped BiVO4 fine particles prepared by an aqueous route for photocatalytic and photoelectrochemical O2 evolution
,”
J. Photochem. Photobiol., A
353
,
284
291
(
2018
).
78.
J.
Zhang
,
R.
García-Rodríguez
,
P.
Cameron
, and
S.
Eslava
, “
Role of cobalt-iron (oxy)hydroxide (CoFeOx) as oxygen evolution catalyst on hematite photoanodes
,”
Energy Environ. Sci.
11
(
10
),
2972
2984
(
2018
).
79.
B. J.
Trześniewski
and
W. A.
Smith
, “
Photocharged BiVO4 photoanodes for improved solar water splitting
,”
J. Mater. Chem. A
4
(
8
),
2919
2926
(
2016
).
80.
Y.
Zhang
,
Y.
Guo
,
H.
Duan
,
H.
Li
,
C.
Sun
, and
H.
Liu
, “
Facile synthesis of V4+ self-doped, [010] oriented BiVO4 nanorods with highly efficient visible light-induced photocatalytic activity
,”
Phys. Chem. Chem. Phys.
16
(
44
),
24519
24526
(
2014
).
81.
Y.
Wang
,
T.
Zhou
,
K.
Jiang
,
P.
Da
,
Z.
Peng
,
J.
Tang
,
B.
Kong
,
W.-B.
Cai
,
Z.
Yang
, and
G.
Zheng
, “
Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes
,”
Adv. Energy Mater.
4
(
16
),
1400696
(
2014
).
82.
L.
Xu
,
Q.
Jiang
,
Z.
Xiao
,
X.
Li
,
J.
Huo
,
S.
Wang
, and
L.
Dai
, “
Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction
,”
Angew. Chem., Int. Ed.
55
(
17
),
5277
5281
(
2016
).
83.
J. L.
Gautier
,
E.
Rios
,
M.
Gracia
,
J. F.
Marco
, and
J. R.
Gancedo
, “
Characterisation by X-ray photoelectron spectroscopy of thin MnxCo3−xO4(1≥x≥0) spinel films prepared by low-temperature spray pyrolysis
,”
Thin Solid Films
311
(
1–2
),
51
57
(
1997
).
84.
J.
Yang
,
H.
Liu
,
W. N.
Martens
, and
R. L.
Frost
, “
Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs
,”
J. Phys. Chem. C
114
(
1
),
111
119
(
2010
).
85.
T.
Choudhury
,
S. O.
Saied
,
J. L.
Sullivan
, and
A. M.
Abbot
, “
Reduction of oxides of iron, cobalt, titanium and niobium by low-energy ion bombardment
,”
J. Phys. D: Appl. Phys.
22
(
8
),
1185
(
1989
).
86.
V. M.
Jiménez
,
A.
Fernández
,
J. P.
Espinós
, and
A. R.
González-Elipe
, “
The state of the oxygen at the surface of polycrystalline cobalt oxide
,”
J. Electron Spectrosc. Relat. Phenom.
71
(
1
),
61
71
(
1995
).
87.
X.-F.
Lu
,
D.-J.
Wu
,
R.-Z.
Li
,
Q.
Li
,
S.-H.
Ye
,
Y.-X.
Tong
, and
G.-R.
Li
, “
Hierarchical NiCo2O4 nanosheets@hollow microrod arrays for high-performance asymmetric supercapacitors
,”
J. Mater. Chem. A
2
(
13
),
4706
4713
(
2014
).
88.
J.
Bao
,
X.
Zhang
,
B.
Fan
,
J.
Zhang
,
M.
Zhou
,
W.
Yang
,
X.
Hu
,
H.
Wang
,
B.
Pan
, and
Y.
Xie
, “
Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation
,”
Angew. Chem., Int. Ed.
54
(
25
),
7399
7404
(
2015
).
89.
A.
Venugopal
,
R.
Kas
,
K.
Hau
, and
W. A.
Smith
, “
Operando infrared spectroscopy reveals the dynamic nature of semiconductor–electrolyte interface in multinary metal oxide photoelectrodes
,”
J. Am. Chem. Soc.
143
(
44
),
18581
18591
(
2021
).
90.
H.
Chen
,
J.
Li
,
W.
Yang
,
S. E.
Balaghi
,
C. A.
Triana
,
C. K.
Mavrokefalos
, and
G. R.
Patzke
, “
The role of surface states on reduced TiO2@BiVO4 photoanodes: Enhanced water oxidation performance through improved charge transfer
,”
ACS Catal.
11
(
13
),
7637
7646
(
2021
).
91.
P.
Yang
,
H.
Shi
,
H.
Wu
,
D.
Yu
,
L.
Huang
,
Y.
Wu
,
X.
Gong
,
P.
Xiao
, and
Y.
Zhang
, “
Manipulating the surface states of BiVO4 through electrochemical reduction for enhanced PEC water oxidation
,”
Nanoscale
15
(
9
),
4536
4545
(
2023
).
92.
R.
Yalavarthi
,
R.
Zbořil
,
P.
Schmuki
,
A.
Naldoni
, and
Š.
Kment
, “
Elucidating the role of surface states of BiVO4 with Mo doping and a CoOOH co-catalyst for photoelectrochemical water splitting
,”
J. Power Sources
483
,
229080
(
2021
).
93.
E.
Usman
,
M.
Barzgar Vishlaghi
,
A.
Kahraman
,
N.
Solati
, and
S.
Kaya
, “
Modifying the electron-trapping process at the BiVO4 surface states via the TiO2 overlayer for enhanced water oxidation
,”
ACS Appl. Mater. Interfaces
13
(
50
),
60602
60611
(
2021
).
94.
A.
Sharma
,
S.
Manna
, and
A. K.
Satpati
, “
Enhancement in photoelectrochemical efficiency and modulation of surface states in BiVO4 through the TiO2 outer layer using the atomic layer deposition technique
,”
J. Phys. Chem. C
127
(
9
),
4395
4406
(
2023
).
95.
M. E.
Orazem
and
B.
Tribollet
,
Electrochemical Impedance Spectroscopy
, 2nd ed. (
Wiley
,
Hoboken, NJ
,
2017
).
96.
B.
Klahr
,
S.
Gimenez
,
F.
Fabregat-Santiago
,
T.
Hamann
, and
J.
Bisquert
, “
Water oxidation at hematite photoelectrodes: The role of surface states
,”
J. Am. Chem. Soc.
134
(
9
),
4294
4302
(
2012
).
97.
L.
Bertoluzzi
and
J.
Bisquert
, “
Equivalent circuit of electrons and holes in thin semiconductor films for photoelectrochemical water splitting applications
,”
J. Phys. Chem. Lett.
3
(
17
),
2517
2522
(
2012
).
98.
Y.
Ma
,
S. R.
Pendlebury
,
A.
Reynal
,
F.
Le Formal
, and
J. R.
Durrant
, “
Dynamics of photogenerated holes in undoped BiVO4 photoanodes for solar water oxidation
,”
Chem. Sci.
5
,
2964
2973
(
2014
).
99.
L. M.
Abrantes
and
L. M.
Peter
, “
Transient photocurrents at passive iron electrodes
,”
J. Electroanal. Chem. Interfacial Electrochem.
150
(
1–2
),
593
601
(
1983
).
100.
L. M.
Peter
, “
Energetics and kinetics of light-driven oxygen evolution at semiconductor electrodes: The example of hematite
,”
J. Solid State Electrochem.
17
(
2
),
315
326
(
2013
).
101.
D.
Hein
,
G.
Wartner
,
A.
Bergmann
,
M.
Bernal
,
B.
Roldan Cuenya
, and
R.
Seidel
, “
Reversible water-induced phase changes of cobalt oxide nanoparticles
,”
ACS Nano
14
(
11
),
15450
15457
(
2020
).
102.
W.
Kang
,
R.
Wei
,
H.
Yin
,
D.
Li
,
Z.
Chen
,
Q.
Huang
,
P.
Zhang
,
H.
Jing
,
X.
Wang
, and
C.
Li
, “
Unraveling sequential oxidation kinetics and determining roles of multi-cobalt active sites on Co3O4 catalyst for water oxidation
,”
J. Am. Chem. Soc.
145
(
6
),
3470
3477
(
2023
).
103.
N.
Fujiwara
,
K.
Yamashita
, and
A.
Muraoka
, “
Theoretical study on the reaction mechanism of the water-splitting process on cobalt oxide catalysts
,”
J. Comput. Chem., Jpn.
21
(
2
),
45
47
(
2022
).
104.
F.
Zasada
,
W.
Piskorz
, and
Z.
Sojka
, “
Cobalt spinel at various redox conditions: DFT+U investigations into the structure and surface thermodynamics of the (100) facet
,”
J. Phys. Chem. C
119
(
33
),
19180
19191
(
2015
).
105.
X.
Li
,
H.-Y.
Wang
,
H.
Yang
,
W.
Cai
,
S.
Liu
, and
B.
Liu
, “
In situ/operando characterization techniques to probe the electrochemical reactions for energy conversion
,”
Small Methods
2
(
6
),
1700395
(
2018
).
106.
A.
Erbe
,
M. F.
Tesch
,
O.
Rüdiger
,
B.
Kaiser
,
S.
DeBeer
, and
M.
Rabe
, “
Operando studies of Mn oxide based electrocatalysts for the oxygen evolution reaction
,”
Phys. Chem. Chem. Phys.
25
(
40
),
26958
26971
(
2023
).
107.
K. A.
Stoerzinger
,
W. T.
Hong
,
E. J.
Crumlin
,
H.
Bluhm
, and
Y.
Shao-Horn
, “
Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy
,”
Acc. Chem. Res.
48
(
11
),
2976
2983
(
2015
).
108.
C. H. M.
van Oversteeg
,
H. Q.
Doan
,
F. M. F.
de Groot
, and
T.
Cuk
, “
In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts
,”
Chem. Soc. Rev.
46
(
1
),
102
125
(
2017
).
109.
J.
Timoshenko
and
B.
Roldan Cuenya
, “
In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy
,”
Chem. Rev.
121
(
2
),
882
961
(
2021
).
110.
R.
Baddour-Hadjean
and
J.-P.
Pereira-Ramos
, “
Raman microspectrometry applied to the study of electrode materials for lithium batteries
,”
Chem. Rev.
110
(
3
),
1278
1319
(
2010
).
111.
V.
Stancovski
and
S.
Badilescu
, “
In situ Raman spectroscopic–electrochemical studies of lithium-ion battery materials: A historical overview
,”
J. Appl. Electrochem.
44
(
1
),
23
43
(
2014
).

Supplementary Material

You do not currently have access to this content.