We present a numerical approach to magnetic optical rotation based on real-time time-dependent electronic-structure theory. Not relying on perturbation expansions in the magnetic field strength, the formulation allows us to test the range of validity of the linear relation between the rotation angle per unit path length and the magnetic field strength that was established empirically by Verdet 160 years ago. Results obtained from time-dependent coupled-cluster and time-dependent current density-functional theory are presented for the closed-shell molecules H2, HF, and CO in magnetic fields up to 55 kT at standard temperature and pressure conditions. We find that Verdet’s linearity remains valid up to roughly 10–20 kT, above which significant deviations from linearity are observed. Among the three current density-functional approximations tested in this work, the current-dependent Tao–Perdew–Staroverov–Scuseria hybrid functional performs the best in comparison with time-dependent coupled-cluster singles and doubles results for the magnetic optical rotation.

1.
K. K.
Lange
,
E. I.
Tellgren
,
M. R.
Hoffmann
, and
T.
Helgaker
, “
A paramagnetic bonding mechanism for diatomics in strong magnetic fields
,”
Science
337
,
327
331
(
2012
).
2.
M.
Lewenstein
,
P.
Balcou
,
M. Y.
Ivanov
,
A.
L’Huillier
, and
P. B.
Corkum
, “
Theory of high-harmonic generation by low-frequency laser fields
,”
Phys. Rev. A
49
,
2117
2132
(
1994
).
3.
M. A.
Hollands
,
S.
Stopkowicz
,
M. P.
Kitsaras
,
F.
Hampe
,
S.
Blaschke
, and
J. J.
Hermes
, “
A DZ white dwarf with a 30 MG magnetic field
,”
Mon. Not. R. Astron. Soc.
520
,
3560
3575
(
2023
).
4.
E. I.
Tellgren
,
A.
Soncini
, and
T.
Helgaker
, “
Nonperturbative ab initio calculations in strong magnetic fields using London orbitals
,”
J. Chem. Phys.
129
,
154114
(
2008
).
5.
S.
Sen
,
K. K.
Lange
, and
E. I.
Tellgren
, “
Excited states of molecules in strong uniform and nonuniform magnetic fields
,”
J. Chem. Theory Comput.
15
,
3974
3990
(
2019
).
6.
S.
Sun
,
D.
Williams-Young
, and
X.
Li
, “
An ab initio linear response method for computing magnetic circular dichroism spectra with nonperturbative treatment of magnetic field
,”
J. Chem. Theory Comput.
15
,
3162
3169
(
2019
).
7.
S.
Sun
,
D. B.
Williams-Young
,
T. F.
Stetina
, and
X.
Li
, “
Generalized Hartree–Fock with nonperturbative treatment of strong magnetic fields: Application to molecular spin phase transitions
,”
J. Chem. Theory Comput.
15
,
348
356
(
2019
).
8.
S.
Stopkowicz
,
J.
Gauss
,
K. K.
Lange
,
E. I.
Tellgren
, and
T.
Helgaker
, “
Coupled-cluster theory for atoms and molecules in strong magnetic fields
,”
J. Chem. Phys.
143
,
074110
(
2015
).
9.
F.
Hampe
and
S.
Stopkowicz
, “
Equation-of-motion coupled-cluster methods for atoms and molecules in strong magnetic fields
,”
J. Chem. Phys.
146
,
154105
(
2017
).
10.
F.
Hampe
and
S.
Stopkowicz
, “
Transition-dipole moments for electronic excitations in strong magnetic fields using equation-of-motion and linear response coupled-cluster theory
,”
J. Chem. Theory Comput.
15
,
4036
4043
(
2019
).
11.
F.
Hampe
,
N.
Gross
, and
S.
Stopkowicz
, “
Full triples contribution in coupled-cluster and equation-of-motion coupled-cluster methods for atoms and molecules in strong magnetic fields
,”
Phys. Chem. Chem. Phys.
22
,
23522
23529
(
2020
).
12.
G.
Vignale
and
M.
Rasolt
, “
Density-functional theory in strong magnetic fields
,”
Phys. Rev. Lett.
59
,
2360
2363
(
1987
).
13.
G.
Vignale
and
M.
Rasolt
, “
Current- and spin-density-functional theory for inhomogeneous electronic systems in strong magnetic fields
,”
Phys. Rev. B
37
,
10685
10696
(
1988
).
14.
E. I.
Tellgren
,
S.
Kvaal
,
E.
Sagvolden
,
U.
Ekström
,
A. M.
Teale
, and
T.
Helgaker
, “
Choice of basic variables in current-density-functional theory
,”
Phys. Rev. A
86
,
062506
(
2012
).
15.
E. I.
Tellgren
,
A. M.
Teale
,
J. W.
Furness
,
K. K.
Lange
,
U.
Ekström
, and
T.
Helgaker
, “
Non-perturbative calculation of molecular magnetic properties within current-density functional theory
,”
J. Chem. Phys.
140
,
034101
(
2014
).
16.
J. W.
Furness
,
J.
Verbeke
,
E. I.
Tellgren
,
S.
Stopkowicz
,
U.
Ekström
,
T.
Helgaker
, and
A. M.
Teale
, “
Current density functional theory using meta-generalized gradient exchange-correlation functionals
,”
J. Chem. Theory Comput.
11
,
4169
4181
(
2015
).
17.
S.
Kvaal
,
A.
Laestadius
,
E.
Tellgren
, and
T.
Helgaker
, “
Lower semicontinuity of the universal functional in paramagnetic current–density functional theory
,”
J. Phys. Chem. Lett.
12
,
1421
1425
(
2021
).
18.
J. J.
Goings
,
P. J.
Lestrange
, and
X.
Li
, “
Real-time time-dependent electronic structure theory
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1341
(
2018
).
19.
X.
Li
,
N.
Govind
,
C.
Isborn
,
A. E.
DePrince
, and
K.
Lopata
, “
Real-time time-dependent electronic structure theory
,”
Chem. Rev.
120
,
9951
9993
(
2020
).
20.
M.
Nisoli
,
P.
Decleva
,
F.
Calegari
,
A.
Palacios
, and
F.
Martín
, “
Attosecond electron dynamics in molecules
,”
Chem. Rev.
117
,
10760
10825
(
2017
).
21.
A.
Palacios
and
F.
Martín
, “
The quantum chemistry of attosecond molecular science
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
10
,
e1430
(
2020
).
22.
M.
Faraday
, “
I. Experimental researches in electricity.—Nineteenth series
,”
Philos. Trans. R. Soc. London
136
,
1
20
(
1846
).
23.
A. D.
Buckingham
and
P. J.
Stephens
, “
Magnetic optical activity
,”
Annu. Rev. Phys. Chem.
17
,
399
432
(
1966
).
24.
O.
Knudsen
, “
The Faraday effect and physical theory, 1845–1873
,”
Arch. Hist. Exact Sci.
15
,
235
281
(
1976
).
25.
R.
Hui
and
M.
O’Sullivan
, “
Fiber-based optical metrology and spectroscopy techniques
,” in
Fiber-Optic Measurement Techniques
, 2nd ed., edited by
R.
Hui
and
M.
O’Sullivan
(
Academic Press
,
Boston, MA
,
2023
), pp.
557
649
.
26.
T.
Iida
and
H.
Wakana
, “
Communications satellite systems
,” in
Encyclopedia of Physical Science and Technology
, 3rd ed., edited by
R. A.
Meyers
(
Academic Press
,
New York
,
2003
), pp.
375
408
.
27.
J. L.
Han
, “
Observing interstellar and intergalactic magnetic fields
,”
Annu. Rev. Astron. Astrophys.
55
,
111
157
(
2017
).
28.
K. J.
Carothers
,
R. A.
Norwood
, and
J.
Pyun
, “
High Verdet constant materials for magneto-optical Faraday rotation: A review
,”
Chem. Mater.
34
,
2531
2544
(
2022
).
29.
E.
Verdet
, “
Recherches sur let propriétés optiques développées dans les corps transparents par l’action du magnétisme
,”
Ann. Chim. Phys.
41
,
370
412
(
1854
).
30.
E.
Verdet
, “
Recherches sur let propriétés optiques développées dans les corps transparents par l’action du magnétisme
,”
Ann. Chim. Phys.
43
,
37
44
(
1855
).
31.
E.
Verdet
, “
Recherches sur let propriétés optiques développées dans les corps transparents par l’action du magnétisme
,”
Ann. Chim. Phys.
52
,
129
163
(
1858
).
32.
E.
Verdet
, “
Recherches sur let propriétés optiques développées dans les corps transparents par l’action du magnétisme
,”
Ann. Chim. Phys.
Ann. Chim. Phys.
69
,
415
491
(
1863
).
33.
H.
Morita
and
S.
Fujioka
, “
Generation, measurement, and modeling of strong magnetic fields generated by laser-driven micro coils
,”
Rev. Mod. Plasma Phys.
7
,
13
(
2023
).
34.
D.
Nakamura
,
A.
Ikeda
,
H.
Sawabe
,
Y. H.
Matsuda
, and
S.
Takeyama
, “
Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression
,”
Rev. Sci. Instrum.
89
,
095106
(
2018
).
35.
R.
Serber
, “
The theory of the Faraday effect in molecules
,”
Phys. Rev.
41
,
489
506
(
1932
).
36.
L. D.
Barron
,
Molecular Light Scattering and Optical Activity
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2004
).
37.
W. A.
Parkinson
and
J.
Oddershede
, “
Response function analysis of magnetic optical rotation
,”
Int. J. Quantum Chem.
64
,
599
605
(
1997
).
38.
S.
Coriani
,
C.
Hättig
,
P.
Jørgensen
,
A.
Halkier
, and
A.
Rizzo
, “
Coupled cluster calculations of Verdet constants
,”
Chem. Phys. Lett.
281
,
445
451
(
1997
).
39.
S.
Coriani
,
C.
Hättig
,
P.
Jørgensen
, and
T.
Helgaker
, “
Gauge-origin independent magneto-optical activity within coupled cluster response theory
,”
J. Chem. Phys.
113
,
3561
3572
(
2000
).
40.
S.
Coriani
,
P.
Jørgensen
,
O.
Christiansen
, and
J.
Gauss
, “
Triple excitation effects in coupled cluster calculations of Verdet constants
,”
Chem. Phys. Lett.
330
,
463
470
(
2000
).
41.
B. S.
Ofstad
,
E.
Aurbakken
,
Ø. S.
Schøyen
,
H. E.
Kristiansen
,
S.
Kvaal
, and
T. B.
Pedersen
, “
Time-dependent coupled-cluster theory
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
13
,
e1666
(
2023
).
42.
M.
Wibowo
,
T. J. P.
Irons
, and
A. M.
Teale
, “
Modeling ultrafast electron dynamics in strong magnetic fields using real-time time-dependent electronic structure methods
,”
J. Chem. Theory Comput.
17
,
2137
2165
(
2021
).
43.
W. A.
Parkinson
,
S. P. A.
Sauer
,
J.
Oddershede
, and
D. M.
Bishop
, “
Calculation of the Verdet constants for H2, N2, CO, and FH
,”
J. Chem. Phys.
98
,
487
495
(
1993
).
44.
T. J. P.
Irons
,
G.
David
, and
A. M.
Teale
, “
Optimizing molecular geometries in strong magnetic fields
,”
J. Chem. Theory Comput.
17
,
2166
2185
(
2021
).
45.
J.
Olsen
and
P.
Jørgensen
, “
Linear and nonlinear response functions for an exact state and for an MCSCF state
,”
J. Chem. Phys.
82
,
3235
3264
(
1985
).
46.
D. M.
Bishop
and
S. M.
Cybulski
, “
Magnetic optical rotation in H2 and D2
,”
J. Chem. Phys.
93
,
590
599
(
1990
).
47.
F.
London
, “
Théorie quantique des courants interatomiques dans les combinaisons aromatiques
,”
J. Phys. Radium
8
,
397
409
(
1937
).
48.
P.
Schmelcher
and
L. S.
Cederbaum
, “
Molecules in strong magnetic fields: Properties of atomic orbitals
,”
Phys. Rev. A
37
,
672
681
(
1988
).
49.
S.
Lehtola
,
M.
Dimitrova
, and
D.
Sundholm
, “
Fully numerical electronic structure calculations on diatomic molecules in weak to strong magnetic fields
,”
Mol. Phys.
118
,
e1597989
(
2020
).
50.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
John Wiley & Sons
,
Chichester
,
2000
).
51.
T. D.
Crawford
and
H. F.
Schaefer
III
, “
An introduction to coupled cluster theory for computational chemists
,” in
Reviews in Computational Chemistry
, edited by
K. B.
Lipkowitz
and
D. B.
Boyd
(
John Wiley & Sons
,
New York
,
2000
), Vol.
14
, pp.
33
136
.
52.
R. J.
Bartlett
and
M.
Musiał
, “
Coupled-cluster theory in quantum chemistry
,”
Rev. Mod. Phys.
79
,
291
352
(
2007
).
53.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory
(
Cambridge University Press
,
New York
,
2009
).
54.
A. I.
Krylov
, “
Equation-of-motion coupled-cluster methods for open-shell and electronically excited species: The Hitchhiker’s guide to Fock space
,”
Annu. Rev. Phys. Chem.
59
,
433
462
(
2008
).
55.
K.
Sneskov
and
O.
Christiansen
, “
Excited state coupled cluster methods
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
566
584
(
2012
).
56.
T.
Helgaker
,
S.
Coriani
,
P.
Jørgensen
,
K.
Kristensen
,
J.
Olsen
, and
K.
Ruud
, “
Recent advances in wave function-based methods of molecular-property calculations
,”
Chem. Rev.
112
,
543
631
(
2012
).
57.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
, “
A fifth-order perturbation comparison of electron correlation theories
,”
Chem. Phys. Lett.
157
,
479
483
(
1989
).
58.
E. I.
Tellgren
,
S. S.
Reine
, and
T.
Helgaker
, “
Analytical GIAO and hybrid-basis integral derivatives: Application to geometry optimization of molecules in strong magnetic fields
,”
Phys. Chem. Chem. Phys.
14
,
9492
9499
(
2012
).
59.
T. J. P.
Irons
,
J.
Zemen
, and
A. M.
Teale
, “
Efficient calculation of molecular integrals over London atomic orbitals
,”
J. Chem. Theory Comput.
13
,
3636
3649
(
2017
).
60.
T. B.
Pedersen
and
S.
Kvaal
, “
Symplectic integration and physical interpretation of time-dependent coupled-cluster theory
,”
J. Chem. Phys.
150
,
144106
(
2019
).
61.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
, “
The second-order approximate coupled cluster singles and doubles model CC2
,”
Chem. Phys. Lett.
243
,
409
418
(
1995
).
62.
H. E.
Kristiansen
,
B. S.
Ofstad
,
E.
Hauge
,
E.
Aurbakken
,
Ø. S.
Schøyen
,
S.
Kvaal
, and
T. B.
Pedersen
, “
Linear and nonlinear optical properties from TDOMP2 theory
,”
J. Chem. Theory Comput.
18
,
3687
3702
(
2022
).
63.
T. B.
Pedersen
,
H.
Koch
, and
C.
Hättig
, “
Gauge invariant coupled cluster response theory
,”
J. Chem. Phys.
110
,
8318
8327
(
1999
).
64.
T.
Sato
,
H.
Pathak
,
Y.
Orimo
, and
K. L.
Ishikawa
, “
Communication: Time-dependent optimized coupled-cluster method for multielectron dynamics
,”
J. Chem. Phys.
148
,
051101
(
2018
).
65.
T. B.
Pedersen
,
B.
Fernández
, and
H.
Koch
, “
Gauge invariant coupled cluster response theory using optimized nonorthogonal orbitals
,”
J. Chem. Phys.
114
,
6983
6993
(
2001
).
66.
S.
Kvaal
, “
Ab initio quantum dynamics using coupled-cluster
,”
J. Chem. Phys.
136
,
194109
(
2012
).
67.
H. E.
Kristiansen
,
Ø. S.
Schøyen
,
S.
Kvaal
, and
T. B.
Pedersen
, “
Numerical stability of time-dependent coupled-cluster methods for many-electron dynamics in intense laser pulses
,”
J. Chem. Phys.
152
,
071102
(
2020
).
68.
H.
Pathak
,
T.
Sato
, and
K. L.
Ishikawa
, “
Time-dependent optimized coupled-cluster method for multielectron dynamics. III. A second-order many-body perturbation approximation
,”
J. Chem. Phys.
153
,
034110
(
2020
).
69.
E. H.
Lieb
, “
Density functionals for Coulomb systems
,”
Int. J. Quantum Chem.
24
,
243
277
(
1983
).
70.
A. M.
Lee
,
N. C.
Handy
, and
S. M.
Colwell
, “
The density functional calculation of nuclear shielding constants using London atomic orbitals
,”
J. Chem. Phys.
103
,
10095
10109
(
1995
).
71.
W.
Zhu
and
S. B.
Trickey
, “
Exact density functionals for two-electron systems in an external magnetic field
,”
J. Chem. Phys.
125
,
094317
(
2006
).
72.
J. F.
Dobson
, “
Alternative expressions for the fermi hole curvature
,”
J. Chem. Phys.
98
,
8870
8872
(
1993
).
73.
A. D.
Becke
, “
Current-density dependent exchange-correlation functionals
,”
Can. J. Chem.
74
,
995
997
(
1996
).
74.
J. E.
Bates
and
F.
Furche
, “
Harnessing the meta-generalized gradient approximation for time-dependent density functional theory
,”
J. Chem. Phys.
137
,
164105
(
2012
).
75.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
, “
Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids
,”
Phys. Rev. Lett.
91
,
146401
(
2003
).
76.
T. J. P.
Irons
,
L.
Spence
,
G.
David
,
B. T.
Speake
,
T.
Helgaker
, and
A. M.
Teale
, “
Analyzing magnetically induced currents in molecular systems using current-density-functional theory
,”
J. Phys. Chem. A
124
,
1321
1333
(
2020
).
77.
J. F.
Stanton
and
R. J.
Bartlett
, “
The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties
,”
J. Chem. Phys.
98
,
7029
7039
(
1993
).
78.
F.
Ding
,
B. E.
Van Kuiken
,
B. E.
Eichinger
, and
X.
Li
, “
An efficient method for calculating dynamical hyperpolarizabilities using real-time time-dependent density functional theory
,”
J. Chem. Phys.
138
,
064104
(
2013
).
79.
B. S.
Ofstad
,
H. E.
Kristiansen
,
E.
Aurbakken
,
Ø. S.
Schøyen
,
S.
Kvaal
, and
T. B.
Pedersen
, “
Adiabatic extraction of nonlinear optical properties from real-time time-dependent electronic-structure theory
,”
J. Chem. Phys.
158
,
154102
(
2023
).
80.
E.
Aurbakken
,
K. H.
Fredly
,
H. E.
Kristiansen
,
S.
Kvaal
,
R. H.
Myhre
,
B. S.
Ofstad
,
T. B.
Pedersen
,
Ø. S.
Schøyen
,
H.
Sutterud
, and
S. G.
Winther-Larsen
, HyQD: Hylleraas Quantum Dynamics,
2023
, URL: https://github.com/HyQD.
81.
QUEST
, QUEST, a rapid development platform for QUantum Electronic-Structure Techniques,
2022
, URL: https://quest.codes.
82.
T. B.
Pedersen
and
H.
Koch
, “
Coupled cluster response functions revisited
,”
J. Chem. Phys.
106
,
8059
8072
(
1997
).
83.
F.
Hampe
,
S.
Stopkowicz
,
N.
Gross
,
M.-P.
Kitsaras
,
L.
Grazioli
,
S.
Blaschke
,
P.
Yergün
, and
L.
Monzel
, “
QCUMBRE, quantum chemical utility enabling magnetic-field dependent investigations benefitting from rigorous electron-correlation treatment
,” https://www.qcumbre.org (
2023
).
84.
J. F.
Stanton
,
J.
Gauss
,
L.
Cheng
,
M. E.
Harding
,
D. A.
Matthews
, and
P. G.
Szalay
, “
CFOUR, coupled-cluster techniques for computational chemistry, a quantum-chemical program package
,” With contributions from
A.
Asthana
,
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
S.
Blaschke
,
Y. J.
Bomble
,
S.
Burger
,
O.
Christiansen
,
D.
Datta
,
F.
Engel
,
R.
Faber
,
J.
Greiner
,
M.
Heckert
,
O.
Heun
,
M.
Hilgenberg
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
T.
Kirsch
,
M.-P.
Kitsaras
,
K.
Klein
,
G. M.
Kopper
,
W. J.
Lauderdale
,
F.
Lipparini
,
J.
Liu
,
T.
Metzroth
,
L. A.
Mück
,
D. P.
O’Neill
,
T.
Nottoli
,
J.
Oswald
,
D. R.
Price
,
E.
Prochnow
,
C.
Puzzarini
,
K.
Ruud
,
F.
Schiffmann
,
W.
Schwalbach
,
C.
Simmons
,
S.
Stopkowicz
,
A.
Tajti
,
T.
Uhlirova
,
J.
Vázquez
,
F.
Wang
,
J. D.
Watts
,
P.
Yergün
.
C.
Zhang
,
X.
Zheng
, and the integral packages MOLECULE (
J.
Almlöf
and
P. R.
Taylor
), PROPS (
P. R.
Taylor
), ABACUS (
T.
Helgaker
,
H. J. A.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
), and ECP routines by
A. V.
Mitin
and
C.
van Wüllen
. For the current version, see http://www.cfour.de.
85.
D. A.
Matthews
,
L.
Cheng
,
M. E.
Harding
,
F.
Lipparini
,
S.
Stopkowicz
,
T.-C.
Jagau
,
P. G.
Szalay
,
J.
Gauss
, and
J. F.
Stanton
, “
Coupled-cluster techniques for computational chemistry: The CFOUR program package
,”
J. Chem. Phys.
152
,
214108
(
2020
).
86.
J.
Gauss
,
F.
Lipparini
,
S.
Burger
,
S.
Blaschke
,
M.
Kitsaras
, and
S.
Stopkowicz
, “
MINT, Mainz INTegral package
” (
Johannes Gutenberg-Universität Mainz
,
2015–2021
) (unpublished CFOUR package).
87.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
88.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
89.
D. E.
Woon
and
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties
,”
J. Chem. Phys.
100
,
2975
2988
(
1994
).
90.
B. P.
Prascher
,
D. E.
Woon
,
K. A.
Peterson
,
T. H.
Dunning
, and
A. K.
Wilson
, “
Gaussian basis sets for use in correlated molecular calculations. VII. Valence, core-valence, and scalar relativistic basis sets for Li, Be, Na, and Mg
,”
Theor. Chem. Acc.
128
,
69
82
(
2011
).
91.
E.
Hairer
,
G.
Wanner
, and
C.
Lubich
,
Geometric Numerical Integration
, 2nd ed. (
Springer
,
Berlin, Heidelberg
,
2006
).
92.
L. R.
Ingersoll
and
D. H.
Liebenberg
, “
Faraday effect in gases and vapors II
,”
J. Opt. Soc. Am.
46
,
538
542
(
1956
).
93.
S.
Blanes
and
F.
Casas
,
A Concise Introduction to Geometric Numerical Integration
(
CRC Press
,
Boca Raton
,
2016
).
94.
B. C.
Mort
and
J.
Autschbach
, “
Vibrational corrections to magneto-optical Rotation: A computational study
,”
J. Phys. Chem. A
111
,
5563
5571
(
2007
).
95.
A. J.
Garza
,
G. E.
Scuseria
,
S. B.
Khan
, and
A. M.
Asiri
, “
Assessment of long-range corrected functionals for the prediction of non-linear optical properties of organic materials
,”
Chem. Phys. Lett.
575
,
122
125
(
2013
).
96.
M.
Chołuj
,
J.
Kozłowska
, and
W.
Bartkowiak
, “
Benchmarking DFT methods on linear and nonlinear electric properties of spatially confined molecules
,”
Int. J. Quantum Chem.
118
,
e25666
(
2018
).
97.
S.
Hahn
,
K.
Kim
,
K.
Kim
,
X.
Hu
,
T.
Painter
,
I.
Dixon
,
S.
Kim
,
K. R.
Bhattarai
,
S.
Noguchi
,
J.
Jaroszynski
, and
D. C.
Larbalestier
, “
45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet
,”
Nature
570
,
496
499
(
2019
).

Supplementary Material

You do not currently have access to this content.