Real-time (RT) electronic structure methods provide a natural framework for describing light–matter interactions in arbitrary time-dependent electromagnetic fields (EMF). Optically induced excited state transitions are of particular interest, which require tuned EMF to drive population transfer to and from the specific state(s) of interest. Intersystem crossing, or spin-flip, may be driven through shaped EMF or laser pulses. These transitions can result in long-lived “spin-trapped” excited states, which are especially useful for materials requiring charge separation or protracted excited state lifetimes. Time-dependent configuration interaction (TDCI) is unique among RT methods in that it may be implemented in a basis of eigenstates, allowing for rapid propagation of the time-dependent Schrödinger equation. The recent spin–orbit TDCI (TD-SOCI) enables a real-time description of spin-flip dynamics in an arbitrary EMF and, therefore, provides an ideal framework for rational pulse design. The present study explores the mechanism of multiple spin-flip pathways for a model transition metal complex, FeCO, using shaped pulses designed to drive controlled intersystem crossing and charge transfer. These results show that extremely tunable excited state dynamics can be achieved by considering the dipole transition matrix elements between the states of interest.

1.
J. K.
McCusker
, “
Electronic structure in the transition metal block and its implications for light harvesting
,”
Science
363
,
484
488
(
2019
).
2.
S.
Decurtins
,
P.
Gütlich
,
C.
Köhler
,
H.
Spiering
, and
A. W.
Hauser
, “
Light-induced excited spin state trapping in a transition-metal complex: The hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system
,”
Chem. Phys. Lett.
105
,
1
4
(
1984
).
3.
J. T.
Yarranton
and
J. K.
McCusker
, “
Ligand-field spectroscopy of Co(III) complexes and the development of a spectrochemical series for low-spin d6 charge-transfer chromophores
,”
J. Am. Chem. Soc.
144
,
12488
12500
(
2022
).
4.
S.
Karmakar
,
P.
Chakraborty
, and
T.
Saha-Dasgupta
, “
Trend in light-induced excited-state spin trapping in Fe(II)-based spin crossover systems
,”
Phys. Chem. Chem. Phys.
24
,
10201
10209
(
2022
).
5.
S.
Thallmair
,
D.
Keefer
,
F.
Rott
, and
R.
De Vivie-Riedle
, “
Simulating the control of molecular reactions via modulated light fields: From gas phase to solution
,”
J. Phys. B: At., Mol. Opt. Phys.
50
,
082001
(
2017
).
6.
X.
Yang
and
D.
Wang
, “
Photocatalysis: From fundamental principles to materials and applications
,”
ACS Appl. Energy Mater.
1
,
6657
6693
(
2018
).
7.
Z.
Zhou
,
Z.
Zheng
,
J.
He
,
J.
Wang
,
O. V.
Prezhdo
, and
T.
Frauenheim
, “
Ultrafast laser control of antiferromagnetic–ferrimagnetic switching in two-dimensional ferromagnetic semiconductor heterostructures
,”
Nano Lett.
23
,
5688
5695
(
2023
).
8.
S.
Mondal
and
A.
Barman
, “
Laser controlled spin dynamics of ferromagnetic thin film from femtosecond to nanosecond timescale
,”
Phys. Rev. Appl.
10
,
054037
(
2018
).
9.
T.
Ito
,
K.
Sugimori
,
H.
Nagao
, and
K.
Nishikawa
, “
Laser control of singlet–triplet transition in molecules
,”
Polyhedron
24
,
2726
2731
(
2005
).
10.
P. M.
Johnson
and
T. J.
Sears
, “
Photo-assisted intersystem crossing: The predominant triplet formation mechanism in some isolated polycyclic aromatic molecules excited with pulsed lasers
,”
J. Chem. Phys.
143
,
044305
(
2015
).
11.
M.
Barhoumi
,
J.
Liu
,
G.
Lefkidis
, and
W.
Hübner
, “
Ultrafast control of laser-induced spin-dynamics scenarios on two-dimensional Ni3@C63H54 magnetic system
,”
J. Chem. Phys.
159
,
084304
(
2023
).
12.
I. R.
Sola
,
B. Y.
Chang
,
S. A.
Malinovskaya
, and
V. S.
Malinovsky
, “
Quantum control in multilevel systems
,” in
Advances In Atomic, Molecular, and Optical Physics
(
Elsevier
,
2018
), Vol.
67
, pp.
151
256
.
13.
A.
Cannizzo
,
C.
Milne
,
C.
Consani
,
W.
Gawelda
,
C.
Bressler
,
F.
van Mourik
, and
M.
Chergui
, “
Light-induced spin crossover in Fe(II)-based complexes: The full photocycle unraveled by ultrafast optical and X-ray spectroscopies
,”
Coord. Chem. Rev.
254
,
2677
2686
(
2010
).
14.
Spin-Crossover Materials: Properties and Applications
, edited by
M. A.
Halcrow
(
John Wiley & Sons Ltd.
,
Oxford
,
2013
).
15.
E.
Engel
, “
Chapter 10 Relativistic density functional theory: Foundations and basic formalism
,” in
Theoretical and Computational Chemistry
(
Elsevier
,
2002
), Vol.
11
, pp.
523
621
.
16.
H.
Paulsen
,
V.
Schünemann
, and
J. A.
Wolny
, “
Progress in electronic structure calculations on spin-crossover complexes
,”
Eur. J. Inorg. Chem.
2013
,
628
641
.
17.
A. J.
Jenkins
,
H.
Liu
,
J. M.
Kasper
,
M. J.
Frisch
, and
X.
Li
, “
Variational relativistic two-component complete-active-space self-consistent field method
,”
J. Chem. Theory Comput.
15
,
2974
2982
(
2019
).
18.
D.
Casanova
and
A. I.
Krylov
, “
Spin-flip methods in quantum chemistry
,”
Phys. Chem. Chem. Phys.
22
,
4326
4342
(
2020
).
19.
P. W.
Langhoff
,
S. T.
Epstein
, and
M.
Karplus
, “
Aspects of time-dependent perturbation theory
,”
Rev. Mod. Phys.
44
,
602
644
(
1972
).
20.
L. D.
Barron
,
Molecular Light Scattering and Optical Activity
(
Cambridge University Press
,
2004
).
21.
T.
Helgaker
,
S.
Coriani
,
P.
Jørgensen
,
K.
Kristensen
,
J.
Olsen
, and
K.
Ruud
, “
Recent advances in wave function-based methods of molecular-property calculations
,”
Chem. Rev.
112
,
543
631
(
2012
).
22.
T. D.
Crawford
,
A.
Kumar
,
A. P.
Bazanté
, and
R.
Di Remigio
, “
Reduced-scaling coupled cluster response theory: Challenges and opportunities
,”
WIREs Comput. Mol. Sci.
9
,
e1406
(
2019
).
23.
J. J.
Goings
,
P. J.
Lestrange
, and
X.
Li
, “
Real-time time-dependent electronic structure theory
,”
WIREs Comput. Mol. Sci.
8
,
1341
(
2018
).
24.
X.
Li
,
N.
Govind
,
C.
Isborn
,
A. E.
Deprince
, and
K.
Lopata
, “
Real-time time-dependent electronic structure theory
,”
Chem. Rev.
120
,
9951
9993
(
2020
).
25.
K.
Yabana
and
G.
Bertsch
, “
Time-dependent local-density approximation in real time
,”
Phys. Rev. B
54
,
4484
4487
(
1996
).
26.
K.
Yabana
and
G. F.
Bertsch
, “
Optical response of small carbon clusters
,”
Z. Phys. D: At., Mol. Clusters
42
,
219
225
(
1997
).
27.
K.
Yabana
and
G. F.
Bertsch
, “
Time-dependent local-density approximation in real time: Application to conjugated molecules
,”
Int. J. Quantum Chem.
75
,
55
66
(
1999
).
28.
G. F.
Bertsch
,
J. I.
Iwata
,
A.
Rubio
, and
K.
Yabana
, “
Real-space, real-time method for the dielectric function
,”
Phys. Rev. B
62
,
7998
8002
(
2000
).
29.
K.
Lopata
and
N.
Govind
, “
Modeling fast electron dynamics with real-time time-dependent density functional theory: Application to small molecules and chromophores
,”
J. Chem. Theory Comput.
7
,
1344
1355
(
2011
).
30.
P.
Hoodbhoy
and
J. W.
Negele
, “
Time-dependent coupled-cluster approximation to nuclear dynamics. I. Application to a solvable model
,”
Phys. Rev. C
18
,
2380
2394
(
1978
).
31.
P.
Hoodbhoy
and
J. W.
Negele
, “
Time-dependent coupled-cluster approximation to nuclear dynamics. II. General formulation
,”
Phys. Rev. C
19
,
1971
1982
(
1979
).
32.
K.
Schönhammer
and
O.
Gunnarsson
, “
Time-dependent approach to the calculation of spectral functions
,”
Phys. Rev. B
18
,
6606
6614
(
1978
).
33.
C.
Huber
and
T.
Klamroth
, “
Explicitly time-dependent coupled cluster singles doubles calculations of laser-driven many-electron dynamics
,”
J. Chem. Phys.
134
,
054113
(
2011
).
34.
S.
Kvaal
, “
Ab initio quantum dynamics using coupled-cluster
,”
J. Chem. Phys.
136
,
194109
(
2012
).
35.
T.
Sato
,
H.
Pathak
,
Y.
Orimo
, and
K. L.
Ishikawa
, “
Communication: Time-dependent optimized coupled-cluster method for multielectron dynamics
,”
J. Chem. Phys.
148
,
051101
(
2018
).
36.
T. B.
Pedersen
and
S.
Kvaal
, “
Symplectic integration and physical interpretation of time-dependent coupled-cluster theory
,”
J. Chem. Phys.
150
,
144106
(
2019
).
37.
D. R.
Nascimento
and
A. E.
DePrince
, “
Linear absorption spectra from explicitly time-dependent equation-of-motion coupled-cluster theory
,”
J. Chem. Theory Comput.
12
,
5834
5840
(
2016
).
38.
D. R.
Nascimento
and
A. E.
Deprince
, “
Simulation of near-edge X-ray absorption fine structure with time-dependent equation-of-motion coupled-cluster theory
,”
J. Phys. Chem. Lett.
8
,
2951
2957
(
2017
).
39.
D. R.
Nascimento
and
A. E.
Deprince
, “
A general time-domain formulation of equation-of-motion coupled-cluster theory for linear spectroscopy
,”
J. Chem. Phys.
151
,
160901
(
2019
).
40.
Y. C.
Park
,
A.
Perera
, and
R. J.
Bartlett
, “
Equation of motion coupled-cluster for core excitation spectra: Two complementary approaches
,”
J. Chem. Phys.
151
,
164117
(
2019
).
41.
Y. C.
Park
,
A.
Perera
, and
R. J.
Bartlett
, “
Equation of motion coupled-cluster study of core excitation spectra II: Beyond the dipole approximation
,”
J. Chem. Phys.
155
,
094103
(
2021
).
42.
R. Y.
Cusson
,
R. K.
Smith
, and
J. A.
Maruhn
, “
Time-dependent Hartree-Fock calculation of the reaction 16O + 16O in three dimensions
,”
Phys. Rev. Lett.
36
,
1166
1169
(
1976
).
43.
T.
Klamroth
, “
Laser-driven electron transfer through metal-insulator-metal contacts: Time-dependent configuration interaction singles calculations for a jellium model
,”
Phys. Rev. B
68
,
245421
(
2003
).
44.
T.
Kato
and
H.
Kono
, “
Time-dependent multiconfiguration theory for electronic dynamics of molecules in an intense laser field
,”
Chem. Phys. Lett.
392
,
533
540
(
2004
).
45.
M.
Nest
,
T.
Klamroth
, and
P.
Saalfrank
, “
The multiconfiguration time-dependent Hartree–Fock method for quantum chemical calculations
,”
J. Chem. Phys.
122
,
124102
(
2005
).
46.
F.
Remacle
,
M.
Nest
, and
R. D.
Levine
, “
Laser steered ultrafast quantum dynamics of electrons in LiH
,”
Phys. Rev. Lett.
99
,
183902
(
2007
).
47.
M.
Repisky
,
L.
Konecny
,
M.
Kadek
,
S.
Komorovsky
,
O. L.
Malkin
,
V. G.
Malkin
, and
K.
Ruud
, “
Excitation energies from real-time propagation of the four-component Dirac-Kohn-Sham equation
,”
J. Chem. Theory Comput.
11
,
980
991
(
2015
).
48.
M.
Kadek
,
L.
Konecny
,
B.
Gao
,
M.
Repisky
, and
K.
Ruud
, “
X-ray absorption resonances near L2,3-edges from real-time propagation of the Dirac-Kohn-Sham density matrix
,”
Phys. Chem. Chem. Phys.
17
,
22566
22570
(
2015
).
49.
I. S.
Ulusoy
and
A. K.
Wilson
, “
Spin trapping and flipping in FeCO through relativistic electron dynamics
,”
Phys. Chem. Chem. Phys.
21
,
7265
7271
(
2019
).
50.
S.
Tussupbayev
,
N.
Govind
,
K.
Lopata
, and
C. J.
Cramer
, “
Comparison of real-time and linear-response time-dependent density functional theories for molecular chromophores ranging from sparse to high densities of states
,”
J. Chem. Theory Comput.
11
,
1102
1109
(
2015
).
51.
F.
Bedurke
,
T.
Klamroth
, and
P.
Saalfrank
, “
Many-electron dynamics in laser-driven molecules: Wavefunction theory vs. density functional theory
,”
Phys. Chem. Chem. Phys.
23
,
13544
13560
(
2021
).
52.
Z.
Wang
,
B. G.
Peyton
, and
T. D.
Crawford
, “
Accelerating real-time coupled cluster methods with single-precision arithmetic and adaptive numerical integration
,”
J. Chem. Theory Comput.
18
,
5479
5491
(
2022
).
53.
W.-T.
Peng
,
B. S.
Fales
, and
B. G.
Levine
, “
Simulating electron dynamics of complex molecules with time-dependent complete active space configuration interaction
,”
J. Chem. Theory Comput.
14
,
4129
4138
(
2018
).
54.
C.
Liu
,
J.
Manz
, and
J. C.
Tremblay
, “
From molecular symmetry breaking to symmetry restoration by attosecond quantum control
,” in
Progress in Ultrafast Intense Laser Science XIV
, edited by
K.
Yamanouchi
,
P.
Martin
,
M.
Sentis
,
L.
Ruxin
and
D.
Normand
(
Springer International Publishing
,
Cham
,
2018
), pp.
117
141
.
55.
C.
Liu
,
J.
Manz
,
K.
Ohmori
,
C.
Sommer
,
N.
Takei
,
J. C.
Tremblay
, and
Y.
Zhang
, “
Attosecond control of restoration of electronic structure symmetry
,”
Phys. Rev. Lett.
121
,
173201
(
2018
).
56.
D.
Haase
,
J.
Manz
, and
J. C.
Tremblay
, “
Attosecond charge migration can break electron symmetry while conserving nuclear symmetry
,”
J. Phys. Chem. A
124
,
3329
3334
(
2020
).
57.
C.
Liu
,
J.
Manz
, and
J. C.
Tremblay
, “
Laser-induced electron symmetry restoration in oriented molecules made simple
,”
J. Phys. Chem. Lett.
12
,
4421
4427
(
2021
).
58.
D. G.
Fedorov
,
S.
Koseki
,
M. W.
Schmidt
, and
M. S.
Gordon
, “
Spin-orbit coupling in molecules: Chemistry beyond the adiabatic approximation
,”
Int. Rev. Phys. Chem.
22
,
551
592
(
2003
).
59.
T.
Hirano
,
R.
Okuda
,
U.
Nagashima
, and
P.
Jensen
, “
Geometries and electronic structures of the ground and low-lying excited states of FeCO: An ab initio study
,”
J. Chem. Phys.
137
,
244303
(
2012
).
60.
A. D.
Fortes
and
S. F.
Parker
, “
Structure and spectroscopy of iron pentacarbonyl, Fe(CO)5
,”
J. Am. Chem. Soc.
144
,
17376
17386
(
2022
).
61.
K.
Nagamori
,
M.
Haze
,
H.
Nakata
,
O.
Zingsheim
,
K.
Yamasaki
, and
H.
Kohguchi
, “
Generation of highly vibrationally excited CO in sequential photodissociation of iron carbonyl complexes
,”
J. Phys. Chem. A
126
,
306
313
(
2022
).
62.
P.
Krause
,
T.
Klamroth
, and
P.
Saalfrank
, “
Molecular response properties from explicitly time-dependent configuration interaction methods
,”
J. Chem. Phys.
127
,
034107
(
2007
).
63.
H. B.
Schlegel
,
S. M.
Smith
, and
X.
Li
, “
Electronic optical response of molecules in intense fields: Comparison of TD-HF, TD-CIS, and TD-CIS(D) approaches
,”
J. Chem. Phys.
126
,
244110
(
2007
).
64.
I. S.
Ulusoy
,
Z.
Stewart
, and
A. K.
Wilson
, “
The role of the CI expansion length in time-dependent studies
,”
J. Chem. Phys.
148
,
014107
(
2018
).
65.
P.
Saalfrank
,
F.
Bedurke
,
C.
Heide
,
T.
Klamroth
,
S.
Klinkusch
,
P.
Krause
,
M.
Nest
, and
J. C.
Tremblay
, “
Molecular attochemistry: Correlated electron dynamics driven by light
,” in
Advances in Quantum Chemistry
(
Elsevier
,
2020
), Vol.
81
, pp.
15
50
.
66.
A. D.
Bandrauk
and
H.
Shen
, “
Exponential split operator methods for solving coupled time-dependent Schrödinger equations
,”
J. Chem. Phys.
99
,
1185
1193
(
1993
).
67.
Femtosecond Chemistry
, edited by
J.
Manz
and
L.
Wöste
(
VCH
,
Weinheim, New York; Basel, Cambridge; Tokyo
,
1995
).
68.
M.
Barysz
and
A. J.
Sadlej
, “
Infinite-order two-component theory for relativistic quantum chemistry
,”
J. Chem. Phys.
116
,
2696
2704
(
2002
).
69.
P.
Krause
,
T.
Klamroth
, and
P.
Saalfrank
, “
Time-dependent configuration-interaction calculations of laser-pulse-driven many-electron dynamics: Controlled dipole switching in lithium cyanide
,”
J. Chem. Phys.
123
,
074105
(
2005
).
70.
I. S.
Ulusoy
and
M.
Nest
, “
Correlated electron dynamics: How aromaticity can be controlled
,”
J. Am. Chem. Soc.
133
,
20230
20236
(
2011
).
71.
B. C.
Paulus
,
K. C.
Nielsen
,
C. R.
Tichnell
,
M. C.
Carey
, and
J. K.
McCusker
, “
A modular approach to light capture and synthetic tuning of the excited-state properties of Fe(II)-Based chromophores
,”
J. Am. Chem. Soc.
143
,
8086
8098
(
2021
).
72.
G. M. J.
Barca
,
C.
Bertoni
,
L.
Carrington
,
D.
Datta
,
N.
De Silva
,
J. E.
Deustua
,
D. G.
Fedorov
,
J. R.
Gour
,
A. O.
Gunina
,
E.
Guidez
,
T.
Harville
,
S.
Irle
,
J.
Ivanic
,
K.
Kowalski
,
S. S.
Leang
,
H.
Li
,
W.
Li
,
J. J.
Lutz
,
I.
Magoulas
,
J.
Mato
,
V.
Mironov
,
H.
Nakata
,
B. Q.
Pham
,
P.
Piecuch
,
D.
Poole
,
S. R.
Pruitt
,
A. P.
Rendell
,
L. B.
Roskop
,
K.
Ruedenberg
,
T.
Sattasathuchana
,
M. W.
Schmidt
,
J.
Shen
,
L.
Slipchenko
,
M.
Sosonkina
,
V.
Sundriyal
,
A.
Tiwari
,
J. L.
Galvez Vallejo
,
B.
Westheimer
,
M.
Włoch
,
P.
Xu
,
F.
Zahariev
, and
M. S.
Gordon
, “
Recent developments in the general atomic and molecular electronic structure system
,”
J. Chem. Phys.
152
,
154102
(
2020
).
73.
K.
Tanaka
,
K.
Sakaguchi
, and
T.
Tanaka
, “
Time-resolved infrared diode laser spectroscopy of the ν1 band of the iron carbonyl radical (FeCO) produced by the ultraviolet photolysis of Fe(CO)5
,”
J. Chem. Phys.
106
,
2118
2128
(
1997
).
74.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
); arXiv:1011.1669v3.
75.
N. B.
Balabanov
and
K. A.
Peterson
, “
Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc–Zn
,”
J. Chem. Phys.
123
,
064107
(
2005
).
76.
P. W.
Villalta
and
D. G.
Leopold
, “
A study of FeCO and the 3Σ and 5Σ states of FeCO by negative ion photoelectron spectroscopy
,”
J. Chem. Phys.
98
,
7730
7742
(
1993
).
77.
P.
Sprangle
and
B.
Hafizi
, “
High-power, high-intensity laser propagation and interactions
,”
Phys. Plasmas
21
,
055402
(
2014
).
78.
C. R.
Harris
,
K. J.
Millman
,
S. J.
van der Walt
,
R.
Gommers
,
P.
Virtanen
,
D.
Cournapeau
,
E.
Wieser
,
J.
Taylor
,
S.
Berg
,
N. J.
Smith
,
R.
Kern
,
M.
Picus
,
S.
Hoyer
,
M. H.
van Kerkwijk
,
M.
Brett
,
A.
Haldane
,
J. F.
del Río
,
M.
Wiebe
,
P.
Peterson
,
P.
Gérard-Marchant
,
K.
Sheppard
,
T.
Reddy
,
W.
Weckesser
,
H.
Abbasi
,
C.
Gohlke
, and
T. E.
Oliphant
, “
Array programming with NumPy
,”
Nature
585
,
357
362
(
2020
); arXiv:2006.10256.
79.
P.
Virtanen
,
R.
Gommers
,
T. E.
Oliphant
,
M.
Haberland
,
T.
Reddy
,
D.
Cournapeau
,
E.
Burovski
,
P.
Peterson
,
W.
Weckesser
,
J.
Bright
,
S. J.
van der Walt
,
M.
Brett
,
J.
Wilson
,
K. J.
Millman
,
N.
Mayorov
,
A. R. J.
Nelson
,
E.
Jones
,
R.
Kern
,
E.
Larson
,
C. J.
Carey
,
İ.
Polat
,
Y.
Feng
,
E. W.
Moore
,
J.
VanderPlas
,
D.
Laxalde
,
J.
Perktold
,
R.
Cimrman
,
I.
Henriksen
,
E. A.
Quintero
,
C. R.
Harris
,
A. M.
Archibald
,
A. H.
Ribeiro
,
F.
Pedregosa
,
P.
van Mulbregt
,
A.
Vijaykumar
et al, “
SciPy 1.0: Fundamental algorithms for scientific computing in Python
,”
Nat. Methods
17
,
261
272
(
2020
).
80.
T.
Klamroth
, “
Optimal control of ultrafast laser driven many-electron dynamics in a polyatomic molecule: N-methyl-6-quinolone
,”
J. Chem. Phys.
124
,
144310
(
2006
).
81.
J. B.
Schönborn
,
P.
Saalfrank
, and
T.
Klamroth
, “
Controlling the high frequency response of H2 by ultra-short tailored laser pulses: A time-dependent configuration interaction study
,”
J. Chem. Phys.
144
,
044301
(
2016
).

Supplementary Material

You do not currently have access to this content.