Machine learning interatomic potentials have emerged as a powerful tool for bypassing the spatiotemporal limitations of ab initio simulations, but major challenges remain in their efficient parameterization. We present AL4GAP, an ensemble active learning software workflow for generating multicomposition Gaussian approximation potentials (GAP) for arbitrary molten salt mixtures. The workflow capabilities include: (1) setting up user-defined combinatorial chemical spaces of charge neutral mixtures of arbitrary molten mixtures spanning 11 cations (Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba and two heavy species, Nd, and Th) and 4 anions (F, Cl, Br, and I), (2) configurational sampling using low-cost empirical parameterizations, (3) active learning for down-selecting configurational samples for single point density functional theory calculations at the level of Strongly Constrained and Appropriately Normed (SCAN) exchange-correlation functional, and (4) Bayesian optimization for hyperparameter tuning of two-body and many-body GAP models. We apply the AL4GAP workflow to showcase high throughput generation of five independent GAP models for multicomposition binary-mixture melts, each of increasing complexity with respect to charge valency and electronic structure, namely: LiCl–KCl, NaCl–CaCl2, KCl–NdCl3, CaCl2–NdCl3, and KCl–ThCl4. Our results indicate that GAP models can accurately predict structure for diverse molten salt mixture with density functional theory (DFT)-SCAN accuracy, capturing the intermediate range ordering characteristic of the multivalent cationic melts.

1.
J.
Behler
and
G.
Csányi
, “
Machine learning potentials for extended systems: A perspective
,”
Eur. Phys. J. B
94
,
142
(
2021
).
2.
V. L.
Deringer
,
A. P.
Bartók
,
N.
Bernstein
,
D. M.
Wilkins
,
M.
Ceriotti
, and
G.
Csányi
, “
Gaussian process regression for materials and molecules
,”
Chem. Rev.
121
,
10073
10141
(
2021
).
3.
M.
Ceriotti
, “
Beyond potentials: Integrated machine learning models for materials
,”
MRS Bull.
47
,
1045
1053
(
2022
).
4.
D. P.
Kovács
,
C. v. d.
Oord
,
J.
Kucera
,
A. E.
Allen
,
D. J.
Cole
,
C.
Ortner
, and
G.
Csányi
, “
Linear atomic cluster expansion force fields for organic molecules: Beyond RMSE
,”
J. Chem. Theory Comput.
17
,
7696
7711
(
2021
).
5.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
6.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
, “
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,”
Phys. Rev. Lett.
104
,
136403
(
2010
).
7.
A. P.
Thompson
,
L. P.
Swiler
,
C. R.
Trott
,
S. M.
Foiles
, and
G. J.
Tucker
, “
Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials
,”
J. Comput. Phys.
285
,
316
330
(
2015
).
8.
I. S.
Novikov
,
K.
Gubaev
,
E. V.
Podryabinkin
, and
A. V.
Shapeev
, “
The MLIP package: Moment tensor potentials with MPI and active learning
,”
Mach. Learn.: Sci. Technol.
2
,
025002
(
2020
).
9.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
, “
ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost
,”
Chem. Sci.
8
,
3192
3203
(
2017
).
10.
K. T.
Schütt
,
H. E.
Sauceda
,
P.-J.
Kindermans
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
SchNet–A deep learning architecture for molecules and materials
,”
J. Chem. Phys.
148
,
241722
(
2018
).
11.
A. S.
Christensen
,
L. A.
Bratholm
,
F. A.
Faber
, and
O.
Anatole von Lilienfeld
, “
FCHL revisited: Faster and more accurate quantum machine learning
,”
J. Chem. Phys.
152
,
044107
(
2020
).
12.
H.
Huo
and
M.
Rupp
, “
Unified representation of molecules and crystals for machine learning
,”
Mach. Learn.: Sci. Technol.
3
,
045017
(
2022
).
13.
R.
Lot
,
F.
Pellegrini
,
Y.
Shaidu
, and
E.
Küçükbenli
, “
PANNA: Properties from artificial neural network architectures
,”
Comput. Phys. Commun.
256
,
107402
(
2020
).
14.
A. M.
Cooper
,
J.
Kästner
,
A.
Urban
, and
N.
Artrith
, “
Efficient training of ANN potentials by including atomic forces via Taylor expansion and application to water and a transition-metal oxide
,”
npj Comput. Mater.
6
,
54
(
2020
).
15.
S.
Batzner
,
A.
Musaelian
,
L.
Sun
,
M.
Geiger
,
J. P.
Mailoa
,
M.
Kornbluth
,
N.
Molinari
,
T. E.
Smidt
, and
B.
Kozinsky
, “
E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials
,”
Nat. Commun.
13
,
2453
(
2022
).
16.
J.
Vandermause
,
S. B.
Torrisi
,
S.
Batzner
,
Y.
Xie
,
L.
Sun
,
A. M.
Kolpak
, and
B.
Kozinsky
, “
On-the-fly active learning of interpretable Bayesian force fields for atomistic rare events
,”
npj Comput. Mater.
6
,
20
(
2020
).
17.
G.
Sivaraman
,
A. N.
Krishnamoorthy
,
M.
Baur
,
C.
Holm
,
M.
Stan
,
G.
Csányi
,
C.
Benmore
, and
Á.
Vázquez-Mayagoitia
, “
Machine-learned interatomic potentials by active learning: Amorphous and liquid hafnium dioxide
,”
npj Comput. Mater.
6
,
104
(
2020
).
18.
J.
Guo
,
L.
Ward
,
Y.
Babuji
,
N.
Hoyt
,
M.
Williamson
,
I.
Foster
,
N.
Jackson
,
C.
Benmore
, and
G.
Sivaraman
, “
Composition-transferable machine learning potential for LiCl-KCl molten salts validated by high-energy x-ray diffraction
,”
Phys. Rev. B
106
,
014209
(
2022
).
19.
D.
Montes de Oca Zapiain
,
M. A.
Wood
,
N.
Lubbers
,
C. Z.
Pereyra
,
A. P.
Thompson
, and
D.
Perez
, “
Training data selection for accuracy and transferability of interatomic potentials
,”
npj Comput. Mater.
8
,
189
(
2022
).
20.
L.
Bonati
and
M.
Parrinello
, “
Silicon liquid structure and crystal nucleation from ab initio deep metadynamics
,”
Phys. Rev. Lett.
121
,
265701
(
2018
).
21.
G.
Sivaraman
,
G.
Csanyi
,
A.
Vazquez-Mayagoitia
,
I. T.
Foster
,
S. K.
Wilke
,
R.
Weber
, and
C. J.
Benmore
, “
A combined machine learning and high-energy x-ray diffraction approach to understanding liquid and amorphous metal oxides
,”
J. Phys. Soc. Jpn.
91
,
091009
(
2022
).
22.
N.
Bernstein
,
G.
Csányi
, and
V. L.
Deringer
, “
De novo exploration and self-guided learning of potential-energy surfaces
,”
npj Comput. Mater.
5
,
99
(
2019
).
23.
C.
van der Oord
,
M.
Sachs
,
D.
Kovacs
,
C.
Ortner
, and
G.
Csanyi
, “
Hyperactive learning for data-driven interatomic potentials
,” preprint available at Research Square, https://doi.org/10.21203/rs.3.rs-2248548/v1 (
2022
).
24.
G. C.
Sosso
et al, “
Soap˙gas
,” https://github.com/gcsosso/SOAP_GAS,
2022
.
25.
S. K.
Natarajan
and
M. A.
Caro
, “
Particle swarm based hyper-parameter optimization for machine learned interatomic potentials
,” arXiv:2101.00049 (
2020
).
26.
J.
Dupont
, “
From molten salts to ionic liquids: A ‘nano’ journey
,”
Acc. Chem. Res.
44
,
1223
1231
(
2011
).
27.
H.
Kim
,
D. A.
Boysen
,
J. M.
Newhouse
,
B. L.
Spatocco
,
B.
Chung
,
P. J.
Burke
,
D. J.
Bradwell
,
K.
Jiang
,
A. A.
Tomaszowska
,
K.
Wang
et al, “
Liquid metal batteries: Past, present, and future
,”
Chem. Rev.
113
,
2075
2099
(
2013
).
28.
H. D.
Gougar
,
D. A.
Petti
,
P. A.
Demkowicz
,
W. E.
Windes
,
G.
Strydom
,
J. C.
Kinsey
,
J.
Ortensi
,
M.
Plummer
,
W.
Skerjanc
,
R. L.
Williamson
et al, “
The US department of energy’s high temperature reactor research and development program—Progress as of 2019
,”
Nucl. Eng. Des.
358
,
110397
(
2020
).
29.
J.
Guo
,
N.
Hoyt
, and
M.
Williamson
, “
Multielectrode array sensors to enable long-duration corrosion monitoring and control of concentrating solar power systems
,”
J. Electroanal. Chem.
884
,
115064
(
2021
).
30.
M.
Mehos
,
C.
Turchi
,
J.
Vidal
,
M.
Wagner
,
Z.
Ma
,
C.
Ho
,
W.
Kolb
,
C.
Andraka
, and
A.
Kruizenga
, “
Concentrating solar power Gen3 demonstration roadmap
,” Technical Report No. NREL/TP-5500-67464,
National Renewable Energy Lab
,
Golden, CO
,
2017
.
31.
S.
Tovey
,
A.
Narayanan Krishnamoorthy
,
G.
Sivaraman
,
J.
Guo
,
C.
Benmore
,
A.
Heuer
, and
C.
Holm
, “
DFT accurate interatomic potential for Molten NaCl from machine learning
,”
J. Phys. Chem. C
124
,
25760
25768
(
2020
).
32.
G.
Sivaraman
,
J.
Guo
,
L.
Ward
,
N.
Hoyt
,
M.
Williamson
,
I.
Foster
,
C.
Benmore
, and
N.
Jackson
, “
Automated development of Molten salt machine learning potentials: Application to LiCl
,”
J. Phys. Chem. Lett.
12
,
4278
4285
(
2021
).
33.
V.
Woo
,
N. E.
Jackson
,
G.
Sivaraman
et al (
2023
), “
pythonpanda2/al4gap˙jcp: Initial release
,” Zenodo. https://doi.org/10.5281/zenodo.7916551
34.
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
, “
On representing chemical environments
,”
Phys. Rev. B
87
,
184115
(
2013
).
35.
V. L.
Deringer
and
G.
Csányi
, “
Machine learning based interatomic potential for amorphous carbon
,”
Phys. Rev. B
95
,
094203
(
2017
).
36.
G.
Sivaraman
,
L.
Gallington
,
A. N.
Krishnamoorthy
,
M.
Stan
,
G.
Csányi
,
Á.
Vázquez-Mayagoitia
, and
C. J.
Benmore
, “
Experimentally driven automated machine-learned interatomic potential for a refractory oxide
,”
Phys. Rev. Lett.
126
,
156002
(
2021
).
37.
G.
Sivaraman
, “
ML-IP 2021, A Psi-K tutorial workshop: From atomistic to coarse grained
,” https://youtu.be/yDDMNh2-fbk.
38.
L.
McInnes
,
J.
Healy
, and
S.
Astels
, “
HDBSCAN: Hierarchical density based clustering
,”
J. Open Source Software
2
,
205
(
2017
).
39.
B.
Shahriari
,
K.
Swersky
,
Z.
Wang
,
R. P.
Adams
, and
N.
De Freitas
, “
Taking the human out of the loop: A review of Bayesian optimization
,”
Proc. IEEE
104
,
148
175
(
2015
).
40.
S.
Partee
,
M.
Ellis
,
A.
Rigazzi
,
A. E.
Shao
,
S.
Bachman
,
G.
Marques
, and
B.
Robbins
, “
Using machine learning at scale in numerical simulations with SmartSim: An application to ocean climate modeling
,”
J. Comput. Sci.
62
,
101707
(
2022
).
41.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
, “
Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids
,”
J. Am. Chem. Soc.
118
,
11225
11236
(
1996
).
42.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Strongly constrained and appropriately normed semilocal density functional
,”
Phys. Rev. Lett.
115
,
036402
(
2015
).
43.
J.
Sun
,
R. C.
Remsing
,
Y.
Zhang
,
Z.
Sun
,
A.
Ruzsinszky
,
H.
Peng
,
Z.
Yang
,
A.
Paul
,
U.
Waghmare
,
X.
Wu
et al, “
Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional
,”
Nat. Chem.
8
,
831
836
(
2016
).
44.
D.
Tisi
,
L.
Zhang
,
R.
Bertossa
,
H.
Wang
,
R.
Car
, and
S.
Baroni
, “
Heat transport in liquid water from first-principles and deep neural network simulations
,”
Phys. Rev. B
104
,
224202
(
2021
).
45.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
(
1996
).
46.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1994
).
47.
The GpyOpt Authors, “
GPyOpt: A Bayesian optimization framework in Python
,” http://github.com/SheffieldML/GPyOpt (
2016
).
48.
A.
Barducci
,
G.
Bussi
, and
M.
Parrinello
, “
Well-tempered metadynamics: A smoothly converging and tunable free-energy method
,”
Phys. Rev. Lett.
100
,
020603
(
2008
).
49.
A.
Laio
and
M.
Parrinello
, “
Escaping free-energy minima
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
12562
12566
(
2002
).
50.
G. J.
Janz
,
Molten Salts Handbook
(
Elsevier
,
2013
).
51.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
52.
G.
Csányi
,
S.
Winfield
,
J. R.
Kermode
,
A.
De Vita
,
A.
Comisso
,
N.
Bernstein
, and
M. C.
Payne
, “
Expressive programming for computational physics in Fortran 95+
,” in
IOP Computational Physics Newsletter
(
Spring
,
2007
).
53.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
519
(
1984
).
54.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
55.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
7190
(
1981
).
56.
G. J.
Martyna
,
D. J.
Tobias
, and
M. L.
Klein
, “
Constant pressure molecular dynamics algorithms
,”
J. Chem. Phys.
101
,
4177
4189
(
1994
).
57.
W.
Shinoda
,
M.
Shiga
, and
M.
Mikami
, “
Rapid estimation of elastic constants by molecular dynamics simulation under constant stress
,”
Phys. Rev. B
69
,
134103
(
2004
).
58.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO–The open visualization tool
,”
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2009
).
59.
K.
Igarashi
,
T.
Nijima
, and
J.
Mochinaga
, “
Structure of molten CaCl2-NaCl mixture
,” in
Proceedings of the First International Symposium on Molten Salt Chemistry And Technology
(
Kyoto
,
Japan
,
1983
), Vol. 469.
60.
T. E.
Faber
and
J. M.
Ziman
, “
A theory of the electrical properties of liquid metals: III. The resistivity of binary alloys
,”
Philos. Mag.
11
,
153
173
(
1965
).
61.
D. A.
Keen
, “
A comparison of various commonly used correlation functions for describing total scattering
,”
J. Appl. Crystallogr.
34
,
172
177
(
2001
).
62.
X.
Wei
,
D.
Chen
,
S.
Liu
,
W.
Wang
,
J.
Ding
, and
J.
Lu
, “
Structure and thermophysical properties of molten calcium-containing multi-component chlorides by using specific BMH potential parameters
,”
Energies
15
,
8878
(
2022
).
63.
M.
Bu
,
W.
Liang
,
G.
Lu
, and
J.
Yu
, “
Static and dynamic ionic structure of molten CaCl2 via first-principles molecular dynamics simulations
,”
Ionics
27
,
771
779
(
2021
).
64.
A.
Zeidler
,
P. S.
Salmon
,
T.
Usuki
,
S.
Kohara
,
H. E.
Fischer
, and
M.
Wilson
, “
Structure of Molten NaCl and the decay of the pair-correlations
,”
J. Chem. Phys.
157
,
094504
(
2022
).
65.
S. E.
Day
and
R. L.
McGreevy
, “
Structure factors of Molten CaCi2 and MgCi2 at low q
,”
Phys. Chemi. Liquids Int. J.
15
,
129
136
(
1985
).
66.
R.
McGreevy
and
L.
Pusztai
, “
The structure of molten salts
,”
Proc. R. Soc. London, Ser. A
430
,
241
261
(
1990
).
67.
P. S.
Salmon
, “
The structure of Molten and Glassy 2: 1 binary systems: An approach using the Bhatia–Thornton formalism
,”
Proc. R. Soc. London, Ser. A
437
,
591
606
(
1992
).
68.
A.
Zeidler
,
P.
Chirawatkul
,
P. S.
Salmon
,
T.
Usuki
,
S.
Kohara
,
H. E.
Fischer
, and
W. S.
Howells
, “
Structure of the network glass-former ZnCl2: From the boiling point to the glass
,”
J. Non-Cryst. Solids
407
,
235
245
(
2015
).
69.
F.
Wu
,
S.
Sharma
,
S.
Roy
,
P.
Halstenberg
,
L. C.
Gallington
,
S. M.
Mahurin
,
S.
Dai
,
V. S.
Bryantsev
,
A. S.
Ivanov
, and
C. J.
Margulis
, “
Temperature dependence of short and intermediate range order in Molten MgCl2 and its mixture with KCl
,”
J. Phys. Chem. B
124
,
2892
2899
(
2020
).
70.
M.
Wilson
and
P. A.
Madden
, “
‘Prepeaks’and ‘first sharp diffraction peaks’ in computer simulations of strong and fragile ionic liquids
,”
Phys. Rev. Lett.
72
,
3033
(
1994
).
71.
M.
Salanne
and
P. A.
Madden
, “
Polarization effects in ionic solids and melts
,”
Mol. Phys.
109
,
2299
2315
(
2011
).
72.
A.-L.
Rollet
and
M.
Salanne
, “
Studies of the local structures of molten metal halides
,”
Ann. Rep. Sec. C: Phys. Chem.
107
,
88
123
(
2011
).
73.
G. M.
Photiadis
et al, “
Co-ordination of thorium (IV) in molten alkali-metal chlorides and the structure of liquid and glassy thorium (IV) chloride
,”
J. Chem. Soc., Dalton Trans.
3541
3548
(
1999
).
74.
G. M.
Photiadis
,
B.
Brresen
, and
G. N.
Papatheodorou
, “
Vibrational modes and structures of lanthanide halide–alkali halide binary melts LnBr3–KBr (Ln=La, Nd, Gd) and NdCl3–ACl (a=Li, Na, K, Cs)
,”
J. Chem. Soc., Faraday Trans.
94
,
2605
2613
(
1998
).
75.
F. J.
Alexander
,
J.
Ang
,
J. A.
Bilbrey
,
J.
Balewski
,
T.
Casey
,
R.
Chard
,
J.
Choi
,
S.
Choudhury
,
B.
Debusschere
,
A. M.
DeGennaro
et al, “
Co-design center for exascale machine learning technologies (exalearn)
,”
Int. J. High Perform. Comput. Appl.
35
,
598
616
(
2021
).
76.
J.
Guo
,
V.
Woo
,
D.
Andersson
,
N.
Hoyt
,
M.
Williamson
,
I.
Foster
,
C.
Benmore
,
N. E.
Jackson
, and
G.
Sivaraman
(
2023
). “
Metadynamics enhanced training datasets, DFT-SCAN accurate GAP model and MD trajectories for ‘AL4GAP: Active learning workflow for generating DFT-SCAN accurate machine-learning potentials for combinatorial molten salt mixtures
,’”
Figshare
. https://doi.org/10.6084/m9.figshare.22534981.v1

Supplementary Material

You do not currently have access to this content.