Chirality-induced spin selectivity has been reported in many experiments, but a generally accepted theoretical explanation has not yet been proposed. Here, we introduce a simple model system of a straight cylindrical free-electron wire containing a helical string of atomic scattering centers with spin–orbit interaction. The advantage of this simple model is that it allows deriving analytical expressions for the spin scattering rates, such that the origin of the effect can be easily followed. We find that spin-selective scattering can be viewed as resulting from the constructive interference of partial waves scattered by the spin–orbit terms. We demonstrate that forward scattering rates are independent of spin, while back scattering is spin dependent over wide windows of energy. Although the model does not represent the full details of electron transmission through chiral molecules, it clearly reveals a mechanism that could operate in chiral systems.

1.
K.
Ray
,
S. P.
Ananthavel
,
D. H.
Waldeck
, and
R.
Naaman
,
Science
283
,
814
(
1999
).
2.
B.
Göhler
,
V.
Hamelbeck
,
T. Z.
Markus
,
M.
Kettner
,
G. F.
Hanne
,
Z.
Vager
,
R.
Naaman
, and
H.
Zacharias
,
Science
331
,
894
(
2011
).
3.
D.
Mishra
,
T. Z.
Markus
,
R.
Naaman
,
M.
Kettner
,
B.
Göhler
,
H.
Zacharias
,
N.
Friedman
,
M.
Sheves
, and
C.
Fontanesi
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
14872
(
2013
).
4.
M.
Kettner
,
V. V.
Maslyuk
,
D.
Nürenberg
,
J.
Seibel
,
R.
Gutierrez
,
G.
Cuniberti
,
K.-H.
Ernst
, and
H.
Zacharias
,
J. Phys. Chem. Lett.
9
,
2025
(
2018
).
5.
J. M.
Abendroth
,
K. M.
Cheung
,
D. M.
Stemer
,
M. S.
El Hadri
,
C.
Zhao
,
E. E.
Fullerton
, and
P. S.
Weiss
,
J. Am. Chem. Soc.
141
,
3863
(
2019
).
6.
S.
Mishra
,
A. K.
Mondal
,
S.
Pal
,
T. K.
Das
,
E. Z. B.
Smolinsky
,
G.
Siligardi
, and
R.
Naaman
,
J. Phys. Chem. C
124
,
10776
(
2020
).
7.
V.
Kiran
,
S. P.
Mathew
,
S. R.
Cohen
,
I.
Hernández Delgado
,
J.
Lacour
, and
R.
Naaman
,
Adv. Mater.
28
,
1957
(
2016
).
8.
V.
Kiran
,
S. R.
Cohen
, and
R.
Naaman
,
J. Chem. Phys.
146
,
092302
(
2017
).
9.
A. C.
Aragonès
,
E.
Medina
,
M.
Ferrer-Huerta
,
N.
Gimeno
,
M.
Teixidó
,
J. L.
Palma
,
N.
Tao
,
J. M.
Ugalde
,
E.
Giralt
,
I.
Díez-Pérez
, and
V.
Mujica
,
Small
13
,
1602519
(
2017
).
10.
Z.
Xie
,
T. Z.
Markus
,
S. R.
Cohen
,
Z.
Vager
,
R.
Gutierrez
, and
R.
Naaman
,
Nano Lett.
11
,
4652
(
2011
).
11.
T.
Liu
,
X.
Wang
,
H.
Wang
,
G.
Shi
,
F.
Gao
,
H.
Feng
,
H.
Deng
,
L.
Hu
,
E.
Lochner
,
P.
Schlottmann
,
S.
von Molnár
,
Y.
Li
,
J.
Zhao
, and
P.
Xiong
,
ACS Nano
14
,
15983
(
2020
).
12.
S. P.
Mathew
,
P. C.
Mondal
,
H.
Moshe
,
Y.
Mastai
, and
R.
Naaman
,
Appl. Phys. Lett.
105
,
242408
(
2014
).
13.
H.
Al-Bustami
,
S.
Khaldi
,
O.
Shoseyov
,
S.
Yochelis
,
K.
Killi
,
I.
Berg
,
E.
Gross
,
Y.
Paltiel
, and
R.
Yerushalmi
,
Nano Lett.
22
,
5022
(
2022
).
14.
H.
Lu
,
J.
Wang
,
C.
Xiao
,
X.
Pan
,
X.
Chen
,
R.
Brunecky
,
J. J.
Berry
,
K.
Zhu
,
M. C.
Beard
, and
Z. V.
Vardeny
,
Sci. Adv.
5
,
eaay0571
(
2019
).
15.
O.
Ben Dor
,
S.
Yochelis
,
A.
Radko
,
K.
Vankayala
,
E.
Capua
,
A.
Capua
,
S.-H.
Yang
,
L. T.
Baczewski
,
S. S. P.
Parkin
,
R.
Naaman
, and
Y.
Paltiel
,
Nat. Commun.
8
,
14567
(
2017
).
16.
K.
Banerjee-Ghosh
,
O.
Ben Dor
,
F.
Tassinari
,
E.
Capua
,
S.
Yochelis
,
A.
Capua
,
S.-H.
Yang
,
S. S. P.
Parkin
,
S.
Sarkar
,
L.
Kronik
,
L. T.
Baczewski
,
R.
Naaman
, and
Y.
Paltiel
,
Science
360
,
1331
(
2018
).
17.
M.
Reza Safari
,
F.
Matthes
,
K.-H.
Ernst
,
D. E.
Bürgler
, and
C. M.
Schneider
arXiv:2211.12976 (
2022
).
18.
D. H.
Waldeck
,
R.
Naaman
, and
Y.
Paltiel
,
APL Mater.
9
,
040902
(
2021
).
19.
R.
Naaman
,
Y.
Paltiel
, and
D. H.
Waldeck
,
Nat. Rev. Chem.
3
,
250
(
2019
).
20.
S.-H.
Yang
,
R.
Naaman
,
Y.
Paltiel
, and
S. S. P.
Parkin
,
Nat. Rev. Phys.
3
,
328
(
2021
).
21.
F.
Evers
,
A.
Aharony
,
N.
Bar-Gill
,
O.
Entin-Wohlman
,
P.
Hedegård
,
O.
Hod
,
P.
Jelinek
,
G.
Kamieniarz
,
M.
Lemeshko
,
K.
Michaeli
,
V.
Mujica
,
R.
Naaman
,
Y.
Paltiel
,
S.
Refaely-Abramson
,
O.
Tal
,
J.
Thijssen
,
M.
Thoss
,
J. M.
van Ruitenbeek
,
L.
Venkataraman
,
D. H.
Waldeck
,
B.
Yan
, and
L.
Kronik
,
Adv. Mater.
2022
,
2106629
.
22.
J.
Fransson
,
Phys. Rev. Lett.
102
,
235416
(
2020
).
23.
T. K.
Das
,
F.
Tassinari
,
R.
Naaman
, and
J.
Fransson
,
J. Phys. Chem. C
126
,
3257
(
2022
).
24.
S.
Dalum
and
P.
Hedegård
,
Nano Lett.
19
,
5253
(
2019
).
25.
X.
Yang
,
C. H.
van der Wal
, and
B. J.
van Wees
,
Phys. Rev. B
99
,
024418
(
2019
).
26.
X.
Yang
,
C. H.
van der Wal
, and
B. J.
van Wees
,
Nano Lett.
20
,
6148
(
2020
).
27.
X.
Yang
and
B. J.
van Wees
,
Phys. Rev. B
104
,
155420
(
2021
).
28.
Y.
Wu
and
J. E.
Subotnik
,
Nat. Commun.
12
,
700
(
2021
).
29.
K.
Michaeli
and
R.
Naaman
,
J. Phys. Chem. C
123
,
17043
(
2019
).
30.
R.
Korytár
,
J.
van Ruitenbeek
, and
F.
Evers
, “
Spin currents in chiral molecular junctions
,” (
2022
).
31.
J. H.
Bardarson
,
J. Phys. A: Math. Theor.
41
,
405203
(
2008
).
You do not currently have access to this content.